
SSH.COM

Tectia® Client 7.0

User Manual

27 November 2025

Tectia® Client 7.0: User Manual

27 November 2025
Copyright © 1995–2025 SSH Communications Security Corporation

This software and documentation are protected by international copyright laws and treaties. All rights reserved.

ssh® and Tectia® are registered trademarks of SSH Communications Security Corporation in the United States and in certain other
jurisdictions.

SSH and Tectia logos and names of products and services are trademarks of SSH Communications Security Corporation. Logos
and names of products may be registered in certain jurisdictions.

All other names and marks are property of their respective owners.

No part of this publication may be reproduced, published, stored in an electronic database, or transmitted, in any form or
by any means, electronic, mechanical, recording, or otherwise, for any purpose, without the prior written permission of SSH
Communications Security Corporation.

THERE IS NO WARRANTY OF ANY KIND FOR THE ACCURACY, RELIABILITY OR USEFULNESS OF THIS
INFORMATION EXCEPT AS REQUIRED BY APPLICABLE LAW OR EXPRESSLY AGREED IN WRITING.

For Open Source Software acknowledgements, see appendix Open Source Software License Acknowledgements in the User Manual.

SSH Communications Security Corporation
Karvaamokuja 2D, FI-00380 Helsinki, Finland

3

Table of Contents

1. About This Document .. 7
1.1. Documentation Conventions .. 7

1.1.1. Operating System Names ... 8
1.1.2. Directory Paths .. 9

1.2. Customer Support ... 9
1.3. Component Terminology .. 9

2. Installing Tectia Client .. 13
2.1. Preparing for Installation .. 13

2.1.1. System Requirements ... 13
2.1.2. Hardware and Disk Space Requirements .. 14
2.1.3. Licensing ... 14
2.1.4. Installation Packages .. 14
2.1.5. Upgrading Previously Installed Tectia Client Software .. 15
2.1.6. Downloading Tectia Releases .. 17

2.2. Installing the Tectia Client Software ... 18
2.2.1. Installing on AIX .. 18
2.2.2. Installing on Linux (RPM) .. 18
2.2.3. Installing on Linux (DEB) .. 19
2.2.4. Installing on Solaris .. 20
2.2.5. Installing on Windows ... 21

2.3. Removing the Tectia Client Software .. 24
2.3.1. Removing from AIX ... 24
2.3.2. Removing from Linux (RPM) ... 24
2.3.3. Removing from Linux (DEB) .. 25
2.3.4. Removing from Solaris .. 25
2.3.5. Removing from Windows ... 25

2.4. Files Related to Tectia Client ... 26
2.4.1. File Locations on Unix .. 26
2.4.2. File Locations on Windows .. 27
2.4.3. Registry Keys on Windows ... 29

2.5. Symlinks between ssh/scp/sftp and sshg3/scpg3/sftpg3 (on Unix) 29
3. Getting Started with Tectia Client .. 31

3.1. Product Components .. 31

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

4 Tectia® Client 7.0

3.2. First Login to a Remote Host .. 31
3.2.1. Logging in with PrivX Desktop GUI .. 32
3.2.2. Logging in with Command-Line sshg3 .. 34

3.3. Using Public-Key Authentication .. 36
3.4. Configuring Tectia Client .. 36

3.4.1. Connection Broker Configuration ... 37
3.4.2. Connection Broker Configuration Files ... 38
3.4.3. Command-Line Tools .. 38

3.5. Creating Connection Profiles ... 38
3.5.1. Defining Connection Profile Settings .. 40

3.6. Enabling FIPS 140-2 Mode ... 41
3.6.1. Enabling FIPS Mode Using Configuration GUI .. 41
3.6.2. Enabling FIPS Mode Using Configuration File ... 42
3.6.3. FIPS-Certified Cryptographic Library ... 43

4. Authentication ... 45
4.1. Supported User Authentication Methods .. 45

4.1.1. Compatibility with OpenSSH Keys and Certificates ... 46
4.2. Server Authentication with Public Keys ... 46

4.2.1. Host Key Storage Formats .. 47
4.2.2. Using the System-Wide Host Key Storage .. 49
4.2.3. Resolving Hashed Host Keys ... 51
4.2.4. Using the OpenSSH known_hosts File ... 51

4.3. Server Authentication with Certificates .. 52
4.3.1. Managing CA Certificates with the Configuration File (Unix) 53
4.3.2. Managing CA Certificates with the GUI .. 54

4.4. User Authentication with Passwords .. 54
4.4.1. Defining Password Authentication with the Configuration File (Unix) 54
4.4.2. Using Stored Passwords in Connection Profiles ... 55
4.4.3. Managing Authentication Methods with the GUI .. 57

4.5. User Authentication with Public Keys ... 57
4.5.1. Creating Keys with ssh-keygen-g3 .. 58
4.5.2. Uploading Public Keys Manually ... 59
4.5.3. Creating Keys with the Public-Key Authentication Wizard 62
4.5.4. Using Keys Generated with OpenSSH ... 65
4.5.5. Special Considerations with Windows Servers .. 66

4.6. User Authentication with Certificates .. 66
4.6.1. Using the Configuration File (Unix) ... 67
4.6.2. Configuring User Authentication with Certificates on Windows 68
4.6.3. Importing PKCS Certificates with Tectia Connections Configuration GUI 72

4.7. Host-Based User Authentication (Unix) ... 72
4.8. User Authentication with Keyboard-Interactive .. 72

4.8.1. Defining Keyboard-Interactive Method with the Configuration File (Unix) 72
4.8.2. Defining Keyboard-Interactive Method with the GUI ... 73

4.9. User Authentication with GSSAPI .. 73
4.9.1. Defining GSSAPI Method with the Configuration File (Unix) 73

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

5

4.9.2. Defining GSSAPI Method with the GUI .. 73
5. Transferring Files ... 75

5.1. Secure File Transfer with scpg3 and sftpg3 Commands .. 75
5.1.1. Using scpg3 ... 75
5.1.2. Using sftpg3 .. 76
5.1.3. Enhanced File Transfer Functions .. 76

5.2. Secure File Transfer GUI .. 77
5.2.1. Downloading Files with PrivX Desktop File Transfer GUI 77
5.2.2. Uploading Files with PrivX Desktop File Transfer GUI .. 77
5.2.3. File Properties and Preview .. 78
5.2.4. Differences from OS tools .. 78

5.3. Controlling File Transfer ... 79
5.3.1. Site Command .. 79

6. Secure Shell Tunneling .. 95
6.1. Local Tunnels ... 95

6.1.1. Transparent TCP Tunneling on Windows ... 97
6.1.2. Non-Transparent TCP Tunneling .. 99
6.1.3. Non-Transparent FTP Tunneling ... 101
6.1.4. SOCKS Tunneling ... 103

6.2. Remote Tunnels ... 104
6.3. X11 Forwarding .. 106
6.4. Agent Forwarding .. 106

7. Troubleshooting Tectia Client .. 109
7.1. Gathering Basic Troubleshooting Information .. 109
7.2. Collecting System Information for Troubleshooting .. 109
7.3. Setting Connection Broker to Debug Mode ... 111
7.4. Answers to Common Problems .. 113

A. Connection Broker Configuration Tools ... 115
A.1. Tectia Connections Configuration GUI .. 115

A.1.1. Opening the GUI .. 116
A.1.2. Defining General Settings .. 118
A.1.3. Defining Connection Profiles .. 134
A.1.4. Defining User Authentication .. 153
A.1.5. Defining Server Authentication ... 157
A.1.6. Defining Automatic Tunnels ... 165

A.2. Configuration File for the Connection Broker ... 167
A.3. Backup of Configuration Files ... 212
A.4. Connection Broker Configuration File Quick Reference .. 212
A.5. PrivX Desktop Shortcut Menu (Windows and Linux) ... 222

B. Command-Line Tools and Man Pages .. 223
ssh-broker-g3 .. 225
ssh-broker-ctl .. 231
ssh-troubleshoot ... 238
sshg3 ... 240
scpg3 ... 253

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

6 Tectia® Client 7.0

sftpg3 .. 267
ssh-translation-table .. 301
ssh-keygen-g3 .. 305
ssh-keyfetch .. 311
ssh-cmpclient-g3 .. 315
ssh-scepclient-g3 .. 322
ssh-certview-g3 ... 326
ssh-ekview-g3 ... 330

C. Egrep Syntax .. 331
C.1. Egrep Patterns .. 331
C.2. Escaped Tokens for Regex Syntax Egrep ... 332
C.3. Character Sets For Egrep .. 333

D. Audit Messages ... 337
E. Default and Supported SSH Algorithms ... 369

E.1. Ciphers .. 369
E.2. Key-Exchange Algorithms ... 370
E.3. Message-Authentication Codes ... 371
E.4. Host-Key and Public Key Signature Algorithms ... 372

F. Removing OpenSSL from Tectia Client .. 375
F.1. Background Information ... 375

F.1.1. Should I Remove the OpenSSL Library? .. 375
F.1.2. What Happens If I Remove the OpenSSL Library? .. 375

F.2. Removing the OpenSSL Cryptographic Library ... 375
F.2.1. Linux and Solaris .. 375
F.2.2. Windows ... 376

G. Open Source Software License Acknowledgements .. 377
Index ... 385

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

7

Chapter 1 About This Document

This document describes installing and using Tectia Client. This manual is meant for Tectia Client users
and administrators who install and configure the software.

This document contains the following information:

• Installing Tectia Client

• Getting started

• Authentication

• Transferring files

• Tunneling

• Troubleshooting

• Appendices, including command-line tool, GUI, and audit message references

The Connection Broker handles all cryptographic operations and authentication- related tasks for Tectia
Client. In addition, Tectia Client is configured through the Connection Broker settings made either in an
XML file, or in the Tectia Connections Configuration GUI as described in Section A.1.

For general information on Tectia Client and its features, refer to Tectia Client/Server Product Description.

1.1 Documentation Conventions

The following typographical conventions are used in Tectia documentation:

Table 1.1. Documentation conventions

Convention Usage Example

Bold Tools, menus, GUI elements and
commands, command-line tools,
strong emphasis

Click Apply or OK.

→ Series of menu selections Select File → Save

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

8 Chapter 1 About This Document

Convention Usage Example

Monospace Command-line and
configuration options, file
names and directories, etc.

Refer to readme.txt

Italics Reference to other documents or
products, URLs, emphasis

See Tectia Client User Manual

Monospace

Italics

Replaceable text or values rename oldfile newfile

In front of a command,
indicates that the command is
run as a privileged user (root).

rpm --install package.rpm

$ In front of a command, $
indicates that the command is
run as a non-privileged user.

$ sshg3 user@host

\ At the end of a line in a
command, \ indicates that the
command continues on the next
line, but there was not space
enough to show it on one line.

$ ssh-keygen-g3 -t rsa \

 -F -c mykey

Note

A Note indicates neutral or positive information that emphasizes or supplements important
points of the main text. Supplies information that may apply only in special cases (for example,
memory limitations, equipment configurations, or specific versions of a program).

Caution

A Caution advises users that failure to take or to avoid a specified action could result in loss
of data.

1.1.1 Operating System Names

When the information applies to several operating systems versions, the following naming systems are
used:

• Unix refers to the following supported operating systems:

• IBM AIX

• Red Hat Linux, SUSE Linux

• Solaris

• IBM z/OS, when applicable; as Tectia Server for IBM z/OS is running in USS and uses Unix-like
tools.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Directory Paths 9

• z/OS is used for IBM z/OS, when the information is directly related to IBM z/OS versions.

• Windows refers to all supported Windows versions.

1.1.2 Directory Paths

The following conventions are used in the documentation to refer to directory paths:

$HOME

A Unix environment variable, that indicates the path to the user's home directory.

%APPDATA%

A Windows environment variable, that indicates the path to the user-specific Application Data folder.
By default expands to:

"C:\Users\<username>\AppData\Roaming".

%USERPROFILE%

A Windows environment variable, that indicates the path to the user-specific profile folder. By default
expands to:

"C:\Users\<username>" .

<INSTALLDIR>

Indicates the default installation directory on Windows:

"C:\Program Files (x86)\SSH Communications Security\SSH Tectia" on 64-bit Windows
versions

1.2 Customer Support

All Tectia product documentation is available at https://www.ssh.com/manuals/.

FAQ with how-to instructions for all Tectia products are available at https://documents.ssh.com/.

If you have purchased a maintenance agreement, you are entitled to technical support from SSH
Communications Security. Review your agreement for specific terms and log in at https://support.ssh.com/
.

Information on submitting support requests, feature requests, or bug reports, and on accessing the online
resources is available at https://support.ssh.com/.

1.3 Component Terminology

The following terms are used throughout the documentation.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

https://www.ssh.com/manuals/
https://documents.ssh.com/
https://support.ssh.com/
https://support.ssh.com/

10 Chapter 1 About This Document

client computer
The computer from which the Secure Shell connection is initiated.

Connection Broker
The Connection Broker is a component included in Tectia Client, and in the Tectia Server for IBM z/
OS client tools. Connection Broker handles all cryptographic operations and authentication-related
tasks.

host key pair
A public-key pair used to identify a Secure Shell server. The private hostkey file is accessible only to
the server. The public key file is distributed to users connecting to the server.

remote host
Refers to the other party of the connection, client computer or server computer, depending on the
viewpoint.

Secure Shell client
A client-side application that uses the Secure Shell version 2 protocol, for example sshg3, sftpg3,
or scpg3 of Tectia Client.

Secure Shell server
A server-side application that uses the Secure Shell version 2 protocol.

server computer
The computer on which the Secure Shell service is running and to which the Secure Shell client
connects.

SFTP server
A server-side application that provides a secure file transfer service as a subsystem of the Secure
Shell server.

Tectia Client
A software component installed on a workstation. Tectia Client provides secure interactive file
transfer and terminal client functionality for remote users and system administrators to access and
manage servers running Tectia Server or other applications using the Secure Shell protocol. It also
supports (non-transparent) static tunneling.

Tectia client/server solution
The Tectia client/server solution consists of Tectia Client, Tectia Server, and Tectia Server for IBM
z/OS (including the Tectia Server for IBM z/OS client tools).

Tectia Connections Configuration GUI
Tectia Client has a graphical user interface for configuring the connection settings to remote servers.
The GUI is supported on Windows and Linux.

PrivX Desktop File Transfer GUI
PrivX Desktop includes a graphical user interface (GUI) for handling and performing file transfers
interactively. The GUI is supported on Windows and Linux.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

11

Tectia Server
Tectia Server is a server-side component where Secure Shell clients connect to. There are two versions
of the Tectia Server product available: Tectia Server for Linux, Unix and Windows platforms, and
Tectia Server for IBM z/OS.

Tectia Server for IBM z/OS
Tectia Server for IBM z/OS provides normal Secure Shell connections and supports the enhanced file
transfer (EFT) features and transparent TCP tunneling on IBM mainframes.

Tectia Server Configuration tool
Tectia Server has a graphical user interface that can be used to configure the server instead of editing
the configuration file. The GUI is supported on Windows.

transparent FTP tunneling
An FTP connection transparently encrypted and secured by a Secure Shell tunnel.

transparent TCP tunneling
A TCP application connection transparently encrypted and secured by a Secure Shell tunnel.

tunneled application
A TCP application secured by a Secure Shell connection.

user key pair
A public-key pair used to identify a Secure Shell user. The private key file is accessible only to the
user. The public key file is copied to the servers the user wants to connect to.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

12 Chapter 1 About This Document

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

13

Chapter 2 Installing Tectia Client

This chapter gives instructions on installing (and removing) Tectia Client for each supported platform,
and lists the locations of the Tectia files.

2.1 Preparing for Installation

This section lists the supported platforms and the prerequisites for the Tectia Client installation.

2.1.1 System Requirements

Check the following table for the operating systems supported as Tectia Client platforms:

Table 2.1. Supported operating systems for Tectia Client and Server

Operating System Client Server

IBM AIX (POWER) 7.2, 7.3 7.2, 7.3
Oracle Solaris (SPARC) 11 11
Oracle Solaris (x86-64) 11 11
Red Hat Enterprise Linux
(x86-64)

8, 9, 10 8, 9, 10

Rocky Linux (x86-64) 8, 9, 10 8, 9, 10
Ubuntu (x86-64) 22.04 22.04
Debian GNU/Linux (x86-64) 12, 13 12, 13
SUSE LINUX Enterprise
Desktop (x86-64)

15 15

SUSE LINUX Enterprise Server
(x86-64)

12, 15 12, 15

Microsoft Windows (x86-64) 10, 11, Server 2016, Server
2019, Server 2022, Server 2025

10, 11, Server 2016, Server
2019, Server 2022, Server 2025

Note

Keep the operating system fully patched according to recommendations by the operating system
vendor.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

14 Chapter 2 Installing Tectia Client

2.1.2 Hardware and Disk Space Requirements

Tectia Client does not have any special hardware requirements. Any computer capable of running a current
version of the listed operating systems, and equipped with a functional network connection can be used.

The Tectia Client installation requires about 100 megabytes of disk space.

Note that Tectia Client will save each user's settings in that particular user's personal directory.

2.1.3 Licensing

Tectia Client requires a license to function. The license file is named stc70.dat.

Depending on the platform for which you have purchased Tectia Client, consider the following license-
related issues:

• In the commercial installation packages, the license file(s) are included in the compressed (.zip/.tar)
files together with the release notes (.txt) files and the PDF-format documentation.

• The Tectia evaluation packages do not contain license files; the evaluation versions can be used for 45
days without a license file. On Unix and Windows machines, a banner message will remind users of
how many days are left until the license expires.

• When upgrading the evaluation version or standard commercial version to Tectia Quantum Safe Edition
only license file(s) need to be copied to the license directory and Tectia Client software restarted.

2.1.4 Installation Packages

The installation packages of Tectia Client are compressed into installation bundles. There are three bundles
for each supported operating system, the Tectia Quantum Safe Edition commercial version (-comm-pqc),
the commercial version (-comm) and the upgrade and evaluation version (-upgrd-eval). The evaluation
versions can be used as upgrade packages, if you already have a suitable license.

Select the relevant Tectia Client bundle:

• For AIX platforms:

tectia-client-<version>-aix-6-7-powerpc-comm-pqc.tar

tectia-client-<version>-aix-6-7-powerpc-comm.tar

tectia-client-<version>-aix-6-7-powerpc-upgrd-eval.tar

• For Linux 64-bit platforms (Red Hat Enterprise Linux, Rocky Linux and SUSE Linux):

tectia-client-<version>-linux-x86_64-comm-pqc.tar

tectia-client-<version>-linux-x86_64-comm.tar

tectia-client-<version>-linux-x86_64-upgrd-eval.tar

• For Linux 64-bit platforms (Ubuntu and Debian GNU/Linux):

tectia-client-<version>-linux-ubuntu-x86_64-comm-pqc.tar

tectia-client-<version>-linux-ubuntu-x86_64-comm.tar

tectia-client-<version>-linux-ubuntu-x86_64-upgrd-eval.tar

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Upgrading Previously Installed Tectia Client Software 15

• For Solaris SPARC platform:

tectia-client-<version>-solaris-11-sparc-comm-pqc.tar

tectia-client-<version>-solaris-11-sparc-comm.tar

tectia-client-<version>-solaris-11-sparc-upgrd-eval.tar

• For Solaris x86-64 platform:

tectia-client-<version>-solaris-11-x86_64-comm-pqc.tar

tectia-client-<version>-solaris-11-x86_64-comm.tar

tectia-client-<version>-solaris-11-x86_64-upgrd-eval.tar

• For Windows platforms:

tectia-client-<version>-windows-comm-pqc.zip

tectia-client-<version>-windows-comm.zip

tectia-client-<version>-windows-upgrd-eval.zip

<version> indicates the product release and the current build number (for example 7.0.0.123).

Inside the installation bundles are the actual installation packages for Tectia Client. Select the packages
to install according to which product features are relevant in your environment.

On Unix and Linux platforms, the Tectia Client comes in three installation packages:

• the ssh-tectia-common package contains the common components of Tectia Client and Server.

• the ssh-tectia-client package contains the specific components of Tectia Client.

• the optional ssh-tectia-guisupport package contains the components required for the GUI available
on Linux platforms.

On Windows, Tectia Client comes in a single MSI installation package, and the installation wizard guides
you to select which components to install.

2.1.5 Upgrading Previously Installed Tectia Client Software

Note

Before starting the upgrade, make backups of all configuration files where you have made
modifications. See instructions in Section A.3.

If you are running both Tectia Client and Tectia Server on the same machine, install the same release of
each Tectia product, because there are dependencies between the common components.

Check if you have some Secure Shell software, for example earlier versions of Tectia products or OpenSSH
server or client, running on the machine where you are planning to install the new Tectia versions.

Before installing Tectia Server on Unix platforms, stop any OpenSSH servers running on port 22, or
change their listener port. You do not need to uninstall the OpenSSH software.

When upgrading on SUSE, also install the prerequisite packages:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

16 Chapter 2 Installing Tectia Client

zypper install insserv-compat

The following table shows you which Tectia versions you need to uninstall before you can upgrade to
Tectia Client 7.0. When upgrading versions marked upgrade on top, the earlier version is automatically
removed during the upgrade procedure.

Table 2.2. Upgrade lines

Tectia version AIX Linux Solaris Windows

4.x remove remove remove remove
5.x-6.0 upgrade on top upgrade on top remove remove
6.1-7.0 upgrade on top upgrade on top remove upgrade on top

or remove if
Transparent TCP
Tunneling is
installed

The configuration file format and file locations have been changed in Tectia Client 5.0 and the Unix DTD
directories in version 6.2. Because of this, the configuration files behave differently when upgrading from
4.x and from 5.x-6.1 compared to when upgrading from 6.2 and later versions.

• The 6.2-6.x configuration files are used by 7.0 as such and automatically taken into use.

Note

Any explicitly configured settings, for example Ciphers, MACs and KEXs will be retained
when upgrading. These might include insecure algorithms such as SHA-1 in KEX, or in host
key or public-key signature algorithms. Also, for example the Post Quantum Cryptography
(PQC) Hybrid Key Exchange algorithms, that require the Tectia Quantum Safe Edition
license, need to be prepended to any explicit KEX configuration(s) when upgrading from
Tectia version 6.5 and below. Alternatively, the explicit configuration settings, for example all
KEX algorithms, can be removed from the configuration to use the 7.0 defaults or the PQC
hybrid KEX can be enforced.

• The 5.x-6.1 configuration files are used by 7.0 as such and on Windows platforms automatically taken
into use.

Note

Any explicitly configured settings, for example Ciphers and MACs will be retained when
upgrading. These might include insecure algorithms. In Tectia 6.1 and earlier on Unix the
default auxiliary data directory auxdata was located in /etc/ssh2/ssh-tectia/. If your
Tectia Server configuration file (ssh-server-config.xml) or Tectia Client configuration
file (ssh-broker-config.xml) was created for Tectia version 6.1 or earlier, please update
its DOCTYPE declaration to contain the current path to the server configuration file
DTD directory: /opt/tectia/share/auxdata/ssh-server-ng/ or the Connection Broker
configuration file DTD directory: /opt/tectia/share/auxdata/ssh-broker-ng/.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Downloading Tectia Releases 17

• The 4.x configuration files are not migrated to 7.0, but the default 7.0 configuration is used. However,
the connection profiles are migrated from 4.x to 7.0 on Windows platforms.

When necessary, you can modify the configuration files by using the Tectia Connections Configuration
GUI or by editing the XML configuration files manually with an ASCII text editor or an XML editor.
Please see example files ssh-server-config-example.xml for Tectia Server and ssh-broker-config-
example.xml for Tectia Client.

If you have the Transparent TCP Tunneling option installed, uninstall the previous version of the
client before upgrading to the 7.0 Tectia Client and restart the computer after the uninstallation. See
Section 2.3.5.

Note

As of version 6.4.18 on Unix, the Transparent TCP Tunneling option is no longer included in
the installation package.

On Windows, a backup copy is automatically made of the earlier Tectia Client configuration files and
stored in the user-specific directory:

"%APPDATA%\SSH\backup-<version>-<date>"

where <version> is the Tectia release and <date> is the date of the upgrade.

2.1.6 Downloading Tectia Releases

All releases require a commercial license that is delivered with the installation package.

To download Tectia software from the SSH Customer Download Center:

1. Log in to the Customer Download Center at: https://my.ssh.com

2. Select Tectia Client from the SSH Downloads, and choose the relevant version. Tectia products are
published in major, minor, and maintenance releases:

• Major releases are indicated with full numbers, for example 7. Major releases publish new products
and new major features to existing products, in addition to fixes to the previous versions.

• Minor releases are indicated with the second digit in the release numbers, for example 7.0. Minor
releases publish new features and fixes to the previous versions.

• Maintenance releases are third digit versions, for example 7.0.0. Maintenance releases provide fixes
to the previous versions, not new functionality. The maintenance releases are available for customers
with Maintenance and Support Agreement.

3. Click the link with the correct product version and platform, and the compressed installation package
will be downloaded to the default download folder on your machine.

4. Proceed to the installation. See the platform-specific installation instructions for Tectia Client below.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

https://my.ssh.com

18 Chapter 2 Installing Tectia Client

2.2 Installing the Tectia Client Software

This section gives instructions on installing Tectia Client locally on the supported operating systems.

See the installation instructions for Tectia Client per platform in the following sections.

2.2.1 Installing on AIX

The downloaded installation package contains the compressed installation files.

Two packages are required: one for the common components of Tectia Client and Server, and one for the
specific components of Tectia Client.

To install Tectia Client on AIX, follow the instructions below:

1. Unpack the downloaded tar package.

2. Unpack the installation packages:

$ uncompress ssh-tectia-common-<version>-aix-6-7-powerpc.bff.Z

$ uncompress ssh-tectia-client-<version>-aix-6-7-powerpc.bff.Z

In the commands, <version> is the current package version of Tectia Client (for example, 7.0.0.123).

3. Install the packages by running the following commands with root privileges:

installp -d ssh-tectia-common-<version>-aix-6-7-powerpc.bff SSHTectia.Common

installp -d ssh-tectia-client-<version>-aix-6-7-powerpc.bff SSHTectia.Client

4. Copy the license file to directory: /etc/ssh2/licenses. (This is not necessary in "third-digit"
maintenance updates.) See also Section 2.1.3.

2.2.2 Installing on Linux (RPM)

Tectia Client for Linux platforms is supplied in RPM (Red Hat Package Manager) binary packages for
Red Hat Enterprise Linux and SUSE Linux running on the 64-bit x86-64 platform architecture.

The downloaded installation package contains the RPM installation files. Two packages are always
required: one for the common components of Tectia Client and Server, and one for the specific components
of Tectia Client. If you want to use the product with a graphical user interface (GUI), install also the
optional GUI support package.

To install Tectia Client on Linux, follow the instructions below:

1. Unpack the downloaded tar package.

2. When installing on SUSE or Red Hat Enterprise Linux versions running on the 64-bit x86-64
architecture, use the packages named:

ssh-tectia-common-<version>-linux-x86_64.rpm

ssh-tectia-client-<version>-linux-x86_64.rpm

ssh-tectia-guisupport-<version>-linux-x86_64.rpm

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Installing on Linux (DEB) 19

In the commands, <version> indicates the product release version and the current build number (for
example, 7.0.0.123).

3. Install the packages with root privileges:

rpm -ivh ssh-tectia-common-<version>-linux-x86_64.rpm

rpm -ivh ssh-tectia-client-<version>-linux-x86_64.rpm

rpm -ivh ssh-tectia-guisupport-<version>-linux-x86_64.rpm

Or upgrade the packages if you already have an older Tectia Client version installed:

rpm -Uvh ssh-tectia-common-<version>-linux-x86_64.rpm

rpm -Uvh ssh-tectia-client-<version>-linux-x86_64.rpm

rpm -Uvh ssh-tectia-guisupport-<version>-linux-x86_64.rpm

4. Copy the license file to the /etc/ssh2/licenses directory. (This is not necessary in "third-digit"
maintenance updates.) See also Section 2.1.3.

5. Before you can run the PrivX Desktop client GUI, you will need to install the following dependencies:

On SUSE:

zypper install libxcb-cursor0

On RHEL/Rocky:

dnf install xcb-util-wm xcb-util-keysyms xcb-util-cursor

Note

You need to enable the EPEL repository to obtain some of the dependencies.

Extra dependencies for PrivX Desktop have been verified on RHEL/Rocky 8.x and later, and
may need to be adapted for other RPM-based distributions.

2.2.3 Installing on Linux (DEB)

Tectia Client for Debian GNU/Linux is supplied in Debian (DEB) binary packages for Ubuntu and Debian
running on the 64-bit x86-64 architecture.

The Tectia installation bundle contains the DEB installation files and the license file.

To install Tectia Client on Debian Linux, follow the instructions below:

1. Download the relevant installation bundle according to your license type:

• Commercial Tectia Quantum Safe Edition License:

tectia-client-<version>-linux-ubuntu-x86_64-comm-pqc.tar

• Commercial License:

tectia-client-<version>-linux-ubuntu-x86_64-comm.tar

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

20 Chapter 2 Installing Tectia Client

• Evaluation:

tectia-client-<version>-linux-ubuntu-x86_64-upgrd-eval.tar

In the package names, <version> corresponds to the release version and build number, for example
7.0.0.123-1.

2. Unpack the downloaded tar package.

3. Select the installation packages. Two packages are always required: one for the common components
of Tectia Client and Server, and one for the specific components of Tectia Client.

ssh-tectia-common-<version>_linux-x86_64.deb

ssh-tectia-client-<version>_linux-x86_64.deb

4. Install the packages with root privileges:

dpkg -i ssh-tectia-common-<version>_linux-x86_64.deb

dpkg -i ssh-tectia-client-<version>_linux-x86_64.deb

5. Copy the license file to the /etc/ssh2/licenses directory. (This is not necessary in "third-digit"
maintenance updates.)

6. Before you can run the PrivX Desktop client GUI, install the following dependencies:

apt install libxcb-cursor0

Note

Extra dependencies for PrivX Desktop have been verified on Ubuntu, and may need to be
adapted for other Debian-based distributions.

2.2.4 Installing on Solaris

The downloaded installation package contains the compressed installation files.

Two packages are required: one for the common components of Tectia Client and Server, and one for the
specific components of Tectia Client.

Tectia Client includes support for Zones on Solaris 11. The Tectia software can be installed into the global
and local zones. When the Tectia software is installed into the global zone, it becomes automatically
installed also into the existing local zones. However, if the local zones are added into the system later, the
Tectia Client needs to be separately installed on them.

In case you are installing Tectia Client into a sparse zone, note that the installation process will report a
failure in creating symlinks. The actual installation is finished successfully, but you need to manually add
the /opt/tectia/bin to the path settings.

For information on the Solaris Zones, see the Oracle documentation: System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Installing on Windows 21

To install Tectia Client on Solaris, follow the instructions below:

1. Unpack the downloaded tar package.

2. When installing on Solaris version 11 running on the SPARC architecture, use the packages named:

ssh-tectia-common-<version>-solaris-11-sparc.pkg.Z

ssh-tectia-client-<version>-solaris-11-sparc.pkg.Z

When installing on Solaris version 11 running on the x86-64 architecture, use the packages named:

ssh-tectia-common-<version>-solaris-11-x86_64.pkg.Z

ssh-tectia-client-<version>-solaris-11-x86_64.pkg.Z

In the commands, <version> indicates the product release version and the current build number (for
example, 7.0.0.123).

3. Unpack the installation packages to a suitable place. The standard place is /var/spool/pkg in Solaris
environment. In the command examples below, we use Solaris 11 x86-64:

$ uncompress ssh-tectia-common-<version>-solaris-11-x86_64.pkg.Z

$ uncompress ssh-tectia-client-<version>-solaris-11-x86_64.pkg.Z

4. Install the packages with the pkgadd tool with root privileges:

pkgadd -d ssh-tectia-common-<version>-solaris-11-x86_64.pkg all

pkgadd -d ssh-tectia-client-<version>-solaris-11-x86_64.pkg all

5. Copy the license file to directory: /etc/ssh2/licenses (This is not necessary in "third-digit"
maintenance updates.) .

2.2.5 Installing on Windows

The Windows installation packages are provided in the MSI (Windows Installer) format for Microsoft
Windows versions running on the 64-bit (x86-64) platform architecture.

The downloaded installation package is a zip file containing the license file and the executable Windows
Installer (MSI) package.

The installation is carried out by a standard installation wizard. The wizard prompts you for information,
copies the program files, and sets up the client.

Note

If you want to install both Tectia Client and Tectia Server on the same machine, you must install
both products using the Tectia Server installer ssh-tectia-server-<version>-windows-
<platform>.msi, where <version> shows the Tectia Client/Server release version and build
number (for example 7.0.0.123), and <platform> shows the platform architecture (x86_64
for 64-bit Windows versions).

If you are upgrading a previous installation of Tectia Client, see first Section 2.1.5.

To install Tectia Client on Windows, follow the instructions below:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

22 Chapter 2 Installing Tectia Client

1. Extract the installation zip file contents to a temporary location.

2. Locate the correct Windows Installer file ssh-tectia-client-<version>-windows-<platform>.msi,
where:

• <version> shows the Tectia Client/Server release version and build number, for example
7.0.0.123.

• <platform> shows the platform architecture x86_64 for 64-bit Windows versions.

3. Double-click the installation file, and the installation wizard will start.

Note

The license file will be imported automatically, when you extract the contents of the .zip
package before running the .msi installer.

If you run the .msi installer directly from the .zip package, you need to manually install the
stc70.dat license file after completing the installation. The installation wizard will show
an error message about missing license file (see below), and when you attempt to start the
Tectia Client, you are prompted to install the license manually to the correct directory:

• "C:\Program Files (x86)\SSH Communications Security\SSH Tectia\SSH Tectia
AUX\licenses" on 64-bit Windows versions

Figure 2.1. Warning about a missing license file

On Windows 10, Tectia packages downloaded via browser may trigger a Windows protected
your PC warning. In such cases, proceed with the installation by clicking More info and
Run anyway.

4. Follow the wizard through the installation steps and fill in information as requested.

5. The Typical installation of Tectia Client includes the sshg3.exe, scpg3.exe, and sftpg3.exe command-
line tools, and the graphical user interface for terminal and file transfer.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

23

To also install Transparent TCP Tunneling (described in Section 6.1.1), select Complete when the
wizard prompts for the setup type.

To select specific components to install, select Custom when the wizard prompts for the setup type.
The next dialog box allows you to exclude some of the components from the installation. See Figure 2.2.

Figure 2.2. Installation options with Tectia Client

6. When the installation has finished, click Finish to exit the wizard.

7. You have to restart the computer after installing Tectia Client. Click Yes to restart.

The default installation directory is:

• "C:\Program Files (x86)\SSH Communications Security\SSH Tectia" on 64-bit Windows
versions

Silent Installation

Tectia Client can also be installed silently on a workstation. Silent (non-interactive) installation means
that the installation procedure will not display any user interface and will not ask any questions from the
user. This option is especially useful for system administrators, as it allows remotely-operated automated
installations.

In silent mode, Tectia Client is installed with the default settings and without any additional features.

The following command can be used to install Tectia Client silently:

msiexec /q /i ssh-tectia-client-<version>-windows-<platform>.msi INSTALLDIR="<path>"

In the command:

• <version> shows the current version of Tectia Client, for example 7.0.0.123.

• <platform> shows the platform architecture x86_64 for 64-bit Windows versions.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

24 Chapter 2 Installing Tectia Client

• <path> is the path to the desired installation directory. If the INSTALLDIR variable is omitted, Tectia
Client is installed to the default location.

Desktop Icon

During Windows installation, a PrivX Desktop icon is added to your desktop. It opens the GUI for Tectia
Client.

Figure 2.3. The PrivX Desktop GUI icon

2.3 Removing the Tectia Client Software

This section gives instructions on removing Tectia Client from the supported operating systems.

Note

The uninstallation procedure removes only the files that were created when installing the
software. Any configuration files have to be removed manually.

2.3.1 Removing from AIX

To remove Tectia Client from an AIX environment, follow the instructions below:

1. Remove the installation by issuing the following command with root privileges:

installp -u SSHTectia.Client

2. If you want to remove also the components that are common with Tectia Server, give the following
command:

installp -u SSHTectia.Common

Note that removing the common components disables Tectia Server, if it has been installed on the
same host.

2.3.2 Removing from Linux (RPM)

To remove Tectia Client RPM installation from a Linux environment, follow the instructions below:

1. Remove the installation by issuing the following command with root privileges:

rpm -e ssh-tectia-client

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Removing from Linux (DEB) 25

2. If you want to remove also the components that are common with Tectia Server, give the following
command:

rpm -e ssh-tectia-common

3. To remove the GUI components, issue the following command with root privileges:

rpm -e ssh-tectia-guisupport

2.3.3 Removing from Linux (DEB)

To remove Tectia Client from a Debian Linux environment, follow the instructions below:

1. Remove the installation by issuing the following command with root privileges:

dpkg -P ssh-tectia-client

2. If you want to remove also the components that are common with Tectia Server, give the following
command:

dpkg -P ssh-tectia-common

2.3.4 Removing from Solaris

To remove Tectia Client from a Solaris environment, follow the instructions below:

1. Remove the installation by issuing the following command with root privileges:

pkgrm SSHG3clnt

2. If you want to remove also the components that are common with Tectia Server, give the following
command:

pkgrm SSHG3cmmn

Note that removing the common components disables Tectia Server, if it has been installed on the
same host.

2.3.5 Removing from Windows

There are several ways to remove the Tectia Client installation from Windows. Follow one set of
instructions below:

Using Windows Control Panel tools

1. From the Windows Start menu, open the Control Panel and click Programs and Features.

2. Select Tectia Client from the list of installed programs and click Uninstall.

3. Click Yes to confirm.

Using the Windows Installer

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

26 Chapter 2 Installing Tectia Client

1. Locate the Windows Installer file ssh-tectia-client-<version>-windows-<platform>.msi, where:

• <version> shows the Tectia Client/Server release version and build number, for example
7.0.0.123.

• <platform> shows the platform architecture x86_64 for 64-bit Windows versions.

On some Windows versions the .msi file type is not shown for the installer file.

2. Double-click the installer file, and the Windows Installer will start.

3. Select Remove to start the uninstallation.

4. Click Finish when the removal has been completed.

Using Silent Command-line Tools

Tectia Client can also be removed silently by giving the following command:

msiexec /q /x ssh-tectia-client-<version>-windows-<platform>.msi

In the command, <version> is the version of Tectia Client to be removed (for example, 7.0.0.123), and
<platform> shows the platform architecture (x86_64 for 64-bit Windows versions).

2.4 Files Related to Tectia Client

This section lists the default locations where the installation process will store the Tectia Client
executables, configuration files, the license file, and the user-specific configuration files.

2.4.1 File Locations on Unix

On Unix platforms, the Tectia Client files are located in the following directories:

• /etc/ssh2

• /etc/ssh2/ssh-broker-config.xml: the global Connection Broker configuration file (see ssh-
broker-config(5))

• /etc/ssh2/ssh-broker-config-example.xml: a sample file with Connection Broker
configuration examples

• /etc/ssh2/licenses: the license file directory (see Section 2.1.3).

• /etc/ssh2/hostkeys: the global directory for known remote host keys

•
/opt/tectia/share/auxdata/ssh-broker-ng: the Connection Broker configuration file DTD
directory

• /opt/tectia/share/auxdata/ssh-broker-ng/ssh-broker-ng-config-1.dtd: the document
type definition (DTD) used with the Connection Broker configuration files. Do not edit this file!

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

File Locations on Windows 27

• /opt/tectia/share/auxdata/ssh-broker-ng/ssh-broker-config-default.xml: this
configuration file is read first, and it holds the factory default settings. Do not edit this file, but you
can use it to view the default settings. This file must be available and correctly formatted for the
Connection Broker to start. For the configuration options, see ssh-broker-config(5).

Note

In Tectia Client 6.1 and earlier on Unix the default auxiliary data directory auxdata was
located in /etc/ssh2/ssh-tectia/. If your ssh-broker-config.xml file was created for
Tectia Client version 6.1 or earlier, please update its DOCTYPE declaration to contain the
current path to the Connection Broker configuration file DTD directory: /opt/tectia/
share/auxdata/ssh-broker-ng/.

• /opt/tectia/bin: user binaries such as sshg3 and ssh-broker-g3

• /opt/tectia/man: the manual pages

• /opt/tectia/libexec: library binaries

• /opt/tectia/lib/sshsecsh: library binaries

The user-specific configurations are stored in the following directories:

• $HOME/.ssh2/ssh-broker-config.xml: the user-specific Connection Broker configuration file

• $HOME/.ssh2: the default directory for user keys

• $HOME/.ssh2/random_seed: the seed file for the random number generator

• $HOME/.ssh2/hostkeys: the user-specific directory for known remote host keys

• $HOME/.ssh2/identification: (optional) the identification file used with public-key
authentication

2.4.2 File Locations on Windows

On Windows, the default installation directory (<INSTALLDIR> below) for Tectia products is:

• "C:\Program Files (x86)\SSH Communications Security\SSH Tectia" on 64-bit Windows
versions

On Windows, the Tectia Client files are located in the following directories:

• "<INSTALLDIR>\SSH Tectia Client": the binaries for Tectia Client

• "<INSTALLDIR>\SSH Tectia Broker": the Connection Broker binaries and example configuration
files

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

28 Chapter 2 Installing Tectia Client

• "<INSTALLDIR>\SSH Tectia Broker\ssh-broker-config.xml": the global Connection Broker
configuration file (see its manpage: ssh-broker-config(5))

• "<INSTALLDIR>\SSH Tectia Broker\ssh-broker-config-example.xml": a sample file with
Connection Broker configuration examples

•
"<INSTALLDIR>\SSH Tectia AUX": auxiliary files and binaries such as ssh-keygen-g3.exe

• "<INSTALLDIR>\SSH Tectia AUX\ssh-broker-ng": the Connection Broker configuration file
DTD directory

• "<INSTALLDIR>\SSH Tectia AUX\ssh-broker-ng\ssh-broker-config-default.xml": this
configuration file is read first and it holds the factory default settings. Do not edit this file, but
you can use it to view the default settings. This file must be available and correctly formatted for
the Connection Broker to get started. For the configuration options, see ssh-broker-config(5).

• "<INSTALLDIR>\SSH Tectia AUX\ssh-broker-ng\ssh-broker-ng-config-1.dtd": the
document type definition (DTD) used with the Connection Broker configuration files. Do not
edit this file!

• "<INSTALLDIR>\SSH Tectia AUX\licenses": the license file directory (see Section 2.1.3)

• "<INSTALLDIR>\SSH Tectia AUX\documents": the end-user license agreements.

• "C:\ProgramData\SSH\hostkeys": the global directory for known host keys .

Figure 2.4 shows the Tectia directory structure in the Windows Start menu when several Tectia products
have been installed on the same machine.

Figure 2.4. The Tectia directory structure on Windows

The user-specific configurations are stored in the directories as listed below.

• %APPDATA%\SSH\ssh-broker-config.xml: the user-specific Connection Broker configuration file
with connection profiles

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Registry Keys on Windows 29

• %APPDATA%\SSH\global.dat: the 4.x-6.x version Tectia SSH Terminal GUI configuration file

• %APPDATA%\SSH*.ssh2: the 4.x-6.x version Tectia Terminal GUI profile configuration files

• %APPDATA%\SSH\random_seed: the seed file for the random number generator

• %APPDATA%\SSH\HostKeys: the user-specific directory for known remote host keys

• %APPDATA%\SSH\UserKeys: the default directory for user public-key pairs

• %APPDATA%\SSH\UserCertificates: the default directory for user certificate key pairs

• %APPDATA%\SSH\identification: (optional) the identification file used with public-key
authentication

Note

The user-specific %APPDATA% directory is hidden by default. To view hidden directories, change
the setting in Windows Explorer. For example, select Organize → Folder and search options
on the menu. On the View tab, under Hidden files and folders, select Show hidden files,
folders and drives.

2.4.3 Registry Keys on Windows

On Windows, the Tectia Client installation creates the following registry keys:

• HKLM\SYSTEM\CurrentControlSet\Services\EventLog\Application\SSH Tectia Broker

• HKLM\SYSTEM\CurrentControlSet\Services\EventLog\Application\SSH Tectia Broker GUI

• HKLM\SOFTWARE\SSH Communications Security\SSH Tectia

• HKLM\SOFTWARE\SSH Communications Security\SSH Tectia Client

• HKLM\SOFTWARE\Wow6432Node\SSH Communications Security\SSH Tectia (on x64 architecture,
only)

• HKLM\SOFTWARE\Wow6432Node\SSH Communications Security\SSH Tectia Client (on x64
architecture, only)

2.5 Symlinks between ssh/scp/sftp and sshg3/scpg3/sftpg3
(on Unix)

By default, Tectia Client does not create symlinks between the command-line clients sshg3, scpg3 and
sftpg3, and their earlier versions ssh, scp and sftp.

In case you want to make sure that the sshg3/scpg3/sftpg3 clients are always used instead of the ssh/scp/
sftp clients (even when the user types in ssh/scp/sftp) make symlinks between them by running the
following script any time after the installation:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

30 Chapter 2 Installing Tectia Client

/opt/tectia/libexec/ssh-create-4.x-compat-symlinks

The symlink is needed as the two versions of the clients are located in different directories:

sshg3/scpg3/sftpg3

are located in /opt/tectia/bin/sshg3

ssh/scp/sftp

are located in /usr/local/bin/ssh

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

31

Chapter 3 Getting Started with Tectia Client

This chapter provides information on how to get started with Tectia Client software after it has been
successfully installed.

3.1 Product Components

Tectia Client consists of the following components:

• The Connection Broker: ssh-broker-g3, ssh-broker-ctl

• Secure Shell command-line tools: sshg3, scpg3, sftpg3

• Auxiliary command-line tools: ssh-keygen-g3, ssh-cmpclient-g3, ssh-scepclient-g3, ssh-certview-g3,
ssh-ekview-g3

On Linux, macOS and Windows there are additional GUI components:

• PrivX Desktop GUI (see Section 3.2.1)

• PrivX Desktop File Transfer GUI (see Section 5.2)

• Tectia Connections Configuration GUI (see Section A.1)

3.2 First Login to a Remote Host

This section gives basic instructions on how you can log in from Tectia Client to a Secure Shell server with
the default settings. The default settings on Tectia Client and Tectia Server allow login with passwords,
public keys, and GSSAPI.

There are separate instructions on using the PrivX Desktop GUI to connect to a remote server host (see
Section 3.2.1) and on using sshg3 on the command line (see Section 3.2.2).

Tectia Client includes a shortcut menu that helps configuring the connection settings. description of the
Tectia shortcut menu, see Section A.5.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

32 Chapter 3 Getting Started with Tectia Client

3.2.1 Logging in with PrivX Desktop GUI

With Tectia Client it is easy to establish connections to new remote host computers, and to manage the
settings required for each host. The Quick Connect option allows you to quickly open new connections,
minimizing the work associated with configuring each connection. It is easy to define profiles for new
hosts, and save the correct settings for each.

You can connect to a remote host by using PrivX Desktop as follows:

1. Open the Tectia Client GUI for example by clicking the PrivX Desktop icon on your desktop.

2. PrivX Desktop offers several ways to open a Secure Shell connection:

• On Quick Connect page you can provide host name or profile name and change the most common
connection settings for this connection without editing the profile.

• If you already have an ongoing session, open a New Connection in a new tab by clicking the +
button. You can connect to a new remote host computer and still keep the old connection to a different
host open.

• If earlier session has been disconnected, you can open a new session by pressing Enter or Space on
the keyboard when the (still disconnected) terminal or file transfer window is active.

• If you or the administrator has defined connection profiles, you can also connect from Profiles page
of the New Connection tab by clicking the profile tile. From the alternate profile tile menu you can
choose to Open Terminal or Open File Transfer initially instead of the default channel type.

In this case, the settings defined in the profile (hostname, port, user name etc.) are automatically
used for the connection.

• On Recent Connections page of the New Connection tab, you can quickly reopen connections
to the remote hosts that have been disconnected and closed since the Connection Broker has been
started or open additional connections to the host with ongoing connections.

3. On Quick Connect page of the New Connection tab you can define the server host you want to connect
to:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

33

Define at least the Host and click Connect:

• Host – the FQDN, short host name, the IP address of the remote host or the connection profile name.

• User – your user name on the remote host.

• Port – specify alternate port number if the default Secure Shell listener port 22 is not used on the
remote host.

• Authentication Method – by default enabled user authentication methods from Default Settings
are used unless you specify one of the Quick Connect user authentication methods. Password
will attempt methods used commonly for password-based methods like Password and Keyboard-
interactive only, and Public-Key will use available certificates and public keys only.

• Exclusive connection – by default a new connection to the same remote host will open a new
channel. To open an additional secure shell connection or prevent opening additional channels later
within the connection, enable Exclusive connection checkbox.

• Start with – Terminal or File Transfer as the initial channel in the secure shell connection. You
can later open additional channels or new connections to the server.

Environment variables can be used to pre-fill the Quick Connect values. If undefined, the Default
Settings will be used and the client prompts for required values if needed.

4. The server authentication phase starts. The remote server host will provide your local computer with
its host public key. The host key identifies the server host.

Tectia Client checks if information on this key is already stored in your own host key directory. If not,
the host key directory common to all users on your computer is checked next. If information on this
host key is not found, you are asked to verify the new key.

When public-key authentication is used to authenticate the server, the first connection is very
important. When Tectia Client receives a new server host key, it will display the host identification
message.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

34 Chapter 3 Getting Started with Tectia Client

Figure 3.1. The host identification dialog – the first connection to a remote host

The message displays the fingerprint of the host's public key in the SSH Babble format that is a series
of pronounceable five-letter words in lower case and separated by dashes. By default also base64-
encoded SHA-256 fingerprint is shown.

5. Verify the validity of the fingerprint, preferably by contacting the administrator of the remote host
computer by telephone. After verifying the fingerprint, it is safe to save information on the host key for
future use. You can also choose to cancel the connection, or to proceed with this connection without
saving the host public key information.

Caution

Never save a host public key without verifying its authenticity!

6. Click OK to close the host identification dialog.

Information on the server public key will be stored on the client-side machine so that the client can later
validate the key. On Tectia Client, the public key information is stored in the user's hostkeys directory:

$HOME/.ssh2/hostkeys

After the first connection, only the locally stored information about the server public key will be used
in server authentication.

For more information on server authentication, see Section 4.2.

7. The user authentication phase starts. You will be prompted to authenticate yourself to the server using
the authentication method you selected in the Connect to Server dialog, or by default with your
password or with the passphrase of your private key. The required authentication method depends on
the server settings.

After the server has successfully authenticated you, the Secure Shell connection to the server is opened.

3.2.2 Logging in with Command-Line sshg3

You can connect to a remote host by using sshg3 on the command line:

1. Enter the sshg3 command using the following syntax:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

35

$ sshg3 <hostname>

For example:

$ sshg3 abc.example.com

The basic syntax is:

$ sshg3 user@host#port

where:

• user - Enter a user name that is valid on the remote host. The user@ attribute is optional. If no user
name is given, the local user name is assumed.

• host - Enter the name of the remote host as an IP address, FQDN (fully qualified domain name),
or short host name. The remote host must be running a Secure Shell version 2 server.

• port - Enter the number of the Secure Shell listen port on the remote server. The #port attribute is
optional. If no port is given, the default Secure Shell port 22 is assumed.

If you have defined connection profiles in the ssh-broker-config.xml file, you can also connect by
using the name of the connection profile, for example:

$ sshg3 profile1

In this case, the settings defined in the profile (host name, port, user name etc.) are used for the
connection. For instructions on creating and editing the connection profiles, see the section called “The
profiles Element”.

For more information on the sshg3 commands and options, see sshg3(1).

2. The server authentication phase starts. The server sends its public key to the client for validation (when
server public-key authentication is used).

Tectia Client checks if this key is already stored in your own host key directory. If not, the host key
directory common to all users on your computer is checked next.

If the host key is not found, you are asked to verify it.

When Tectia Client receives a new host public key, a host identification message is displayed. For
example:

$ sshg3 user@server

Host key for the host "server" not found from database.

The fingerprint of the host public key is:

Babble: "xozif-hynas-sehuf-mabyz-zytez-resog-gogum-rilyk-sefop-rucit-paxix"

SHA-256: "E6uSBGEWQTGJdTVBiccvP8PNkQxwAKEWh0aAJTEK4WY"

You can get a public key's fingerprint by running

% ssh-keygen-g3 -F publickey.pub

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

36 Chapter 3 Getting Started with Tectia Client

on the key file.

Please select how you want to proceed.

 cancel) Cancel the connection.

 once) Proceed with the connection but do not save the key.

 save) Proceed with the connection and save the key for future use.

Please select one (cancel, once, save):

The message shows the fingerprint of the host's public key in the SSH Babble format that is a series
of pronounceable five-letter words in lower case and separated by dashes and by default in base64-
encoded SHA-256 format.

3. Verify the validity of the fingerprint, preferably by contacting the administrator of the remote host
computer by telephone.

After the fingerprint has been verified and found to be correct, it is safe to save the key and continue
connecting. You can also select to cancel the connection, or to proceed with the connection without
saving the key.

If you choose to save the server public key, relevant information about the key will be stored on the client
host in directory $HOME/.ssh2/hostkeys on Unix or in %APPDATA%\SSH\HostKeys on Windows.
After the first connection, the locally stored information about the server public key will be used in
server authentication.

For more information on server authentication, see Section 4.2.

4. The user authentication phase starts. You will be prompted to authenticate yourself to the server with
your password or with the passphrase of your private key (if your public key has already been uploaded
to the server). The required authentication method depends on the server settings.

After the server has successfully authenticated you, the Secure Shell connection to the server is opened.

3.3 Using Public-Key Authentication

Public-key authentication is based on the use of digital signatures. To use public-key authentication, you
must first create a key pair on the client, and upload the public key to the server. For instructions, see
Section 4.5.

At connection establishing phase, the server sends Tectia Client a challenge. Sign the challenge with the
passphrase of your private key. After the server has successfully completed user authentication, the Secure
Shell connection to the server is opened.

The Connection Broker operates automatically as an authentication agent. It offers an easy method for
utilizing also digital certificates and smart cards. The authentication forwarding functionality allows the
forwarding of public-key authentication over several Secure Shell connections. The Connection Broker is
started automatically when you start Tectia Client.

3.4 Configuring Tectia Client

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Connection Broker Configuration 37

Tectia Client includes a default configuration that can get you started. To tailor the Tectia Client behaviour
according to the needs of your environment, you can edit the existing configuration.

A component called Connection Broker handles all cryptographic operations and authentication-related
tasks for SSH operations of Tectia Client, so all the related settings are made in the Connection Broker
configuration.

On Linux, macOS and Windows, Tectia Client provides a graphical user interface for handling the
Connection Broker configuration. On other platforms, the configuration can be edited directly in the
configuration file (in XML format). The Connection Broker settings can be edited using the Tectia
Connections Configuration GUI that can be started for example from the Tectia Client tray icon menu.

3.4.1 Connection Broker Configuration

For users of Tectia Client, the most relevant and most typically needed item to configure for the
Connection Broker are the connection profile settings. All other settings are typically configured by system
administrators.

It is advisable to create connection profiles for servers where you will need to connect repeatedly. The
profiles contain the server ID, your user name on that server, and information on the authentication method
to be used.

In general, the following aspects can be configured for the Connection Broker:

Secure connection details

These settings define how Tectia Client will establish the secure connections to the remote servers,
for example: what type of a connection will be opened, what authentication methods will be applied,
will a proxy be used and is tunneling allowed.

User and server authentication methods

The user authentication settings define the methods Tectia Client will use when sending user
authentication data to the remote servers. The Tectia Connections Configuration GUI includes a
public-key wizard (on Linux and Windows) that helps in creating and uploading public keys to the
servers.

The server authentication settings define how the remote servers will be authenticated by Tectia
Client.

Tunneling of connections

Tunnels can be defined to secure all or some TCP applications and FTP connections. It is also possible
to allow forwarding of X11 sessions and SSH connections from one remote server to another.

Tip

The first things to configure are the user authentication settings (creating public keys for the
users and uploading them to remote servers) and creating connection profiles for servers where
you will need to connect repeatedly.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

38 Chapter 3 Getting Started with Tectia Client

For instructions on defining the authentication settings, see Chapter 4, and for the authentication-related
options in the configuration file, see authentication-methods .

For instructions on creating connection profiles via the GUI, see Section A.1.3, and about adding
connection profiles directly into the configuration file, see the section called “The profiles Element”.

For a detailed description of the Connection Broker configuration options, see Appendix A.

3.4.2 Connection Broker Configuration Files

The Connection Broker configuration is stored in an XML file named ssh-broker-config.xml. You can
edit the configuration file with your favorite XML or text editor, but make sure ssh-broker-config.xml
remains a valid XML file. For details about the Connection Broker configuration options, see ssh-broker-
config(5).

When you want to modify the Connection Broker configuration, you will typically edit a user-specific
copy of the configuration file stored in $HOME/.ssh2 on Unix, %APPDATA%\SSH\ on Windows). You need
to create the user-specific configuration file first.

The Tectia Connections Configuration GUI on Windows and Linux also writes to the user-specific
configuration file automatically.

For a list of the related configuration files and their locations:

• on Unix, refer to Section 2.4.1

• on Windows, refer to Section 2.4.2

3.4.3 Command-Line Tools

Tectia Client includes command-line tools sshg3, scpg3 and sftpg3 that can be used to open secure
connections and to transfer files securely - the same as with the PrivX Desktop GUI

These tools can be used in scripts and in real-time with a set of options detailing their behaviour. The
options given on command line will override the settings specified in the configuration file.

The options of each command-line tool are described on the man pages sshg3(1), scpg3(1), and sftpg3(1)).

3.5 Creating Connection Profiles

On Tectia Client on Windows and Linux, you can configure separate connection settings for each Secure
Shell server you connect to. You can also create several profiles for the same server, for example, with
different user accounts.

On Windows, you can add connection profiles via the following views:

• Start PrivX Desktop GUI and open the Tectia Connections Configuration GUI by selecting
Configuration from the menu icon.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

39

(Alternatively, you can open the Tectia Connections Configuration GUI by right-clicking the PrivX

Desktop tray icon in the Windows taskbar notification area and selecting Configuration from the
shortcut menu.)

On Linux, open the Tectia Connections Configuration GUI:

1. Go to the /opt/tectia/bin directory by entering:

$ cd /opt/tectia/bin/

2. Start the Tectia Connections Configuration GUI with the following command:

$ ssh-tectia-configuration

In the Tectia Connections Configuration GUI, go to the Connection Profiles page (as shown below) and
click Add profile.

Figure 3.2. Adding connection profiles

Newly created connection profiles will inherit the default values for authentication, ciphers, MACs, KEXs,
tunneling, and advanced server settings defined under the General → Default Connection page. The
values can be customized on the profile-specific tabbed pages, see Figure 3.3.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

40 Chapter 3 Getting Started with Tectia Client

To rename a connection profile, right-click the profile name in the Connection Profiles list and click
Rename. Type in the new name.

To remove a connection profile, select the profile and click Delete. You will be asked for confirmation.
Click Yes to proceed with the deletion.

3.5.1 Defining Connection Profile Settings

Under the Connection Profile page, on the Connection tab, you can define the protocol settings used in
the connection. Any changed connection settings will take effect the next time you log in.

Figure 3.3. Configuring connection profiles

Profile

In Profile name, type a name for the profile.

Host

In Host name, enter the name of the remote host computer to which you want to connect with the
profile.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Enabling FIPS 140-2 Mode 41

In Port number, enter the port number you want to use for the Secure Shell connection. The default
port is 22.

Note

A Secure Shell server program must be listening to the specified port on the remote host
computer or the connection attempt will not succeed. If you are unsure which port the
remote host computer is listening to, contact the system administrator of the remote host.

User Name

Select Use current user name if the connection should always be made using the currently logged
in Windows or Unix user name. This is similar to defining %USERNAME% (note the percent signs)
as the user name.

Select Specify user name and enter the user name, if you want to define the user name to be used
when connecting to the remote host computer. If you specify %USERNAME% (note the percent signs)
as the user name, it will be replaced with the name of the current Windows or Unix user account
upon connecting.

Advanced

Not needed now: In Compression, select the desired compression setting from the drop-down menu.
Valid choices are zlib and none. Compression is disabled by default.

Not needed now: In Tunnel using profile, select the desired connection profile from the drop-down
menu. Any nested tunnels will be created through the profile. For information on the tunneling
features, refer to Chapter 6.

3.6 Enabling FIPS 140-2 Mode

You can enable Tectia Client to operate in FIPS mode after which all cryptographic operations are run
according to the FIPS 140-2 standard.

In FIPS mode, OpenSSL cryptographic libary is used for all cryptographic operations, see Section 3.6.3.
In Standard mode, Tectia proprietary cryptographic library is used for all cryptographic operations.

Note

In FIPS mode, due to a FIPS regulation which forbids exporting unencrypted private keys out
of the FIPS module, it is not possible to generate user keys without a passphrase.

3.6.1 Enabling FIPS Mode Using Configuration GUI

To enable FIPS mode on Windows:

1. Open Tectia Connections Configuration GUI (see Section A.1.1).

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

42 Chapter 3 Getting Started with Tectia Client

2. Go to the General settings by selecting General in the tree view.

3. Under Cryptographic Library, select FIPS mode.

4. Ensure that the cryptographic algorithms defined for the default connection settings or any
connection profile are compatible with FIPS mode. You will be informed of algorithms that are not
allowed in FIPS mode. For FIPS-compatible algorithms, see Appendix E.

5. Click Apply.

6. Click Stop Broker from the Tectia shortcut menu (see Section A.5).

7. Start a new client or connection that launches a new Connection Broker in FIPS mode.

Note

On Windows, you can switch all Tectia products to FIPS mode by creating a file named FIPSMODE
in the SSH Tectia AUX folder. Note that while the FIPSMODE file is present, all Tectia products
will be in FIPS mode regardless of their configurations the next time they are restarted.

On Windows with Tectia Server also installed on the same machine as Tectia Client, this
file is created and removed automatically when FIPS mode is changed with the Tectia Server
Configuration GUI and configuration is applied.

3.6.2 Enabling FIPS Mode Using Configuration File

To enable FIPS mode on Unix:

1. Open the Connection Broker configuration file ssh-broker-config.xml that you want to modify
(see the section called “Connection Broker Files”.

2. Under the general element, modify the crypto-lib element by settings its value to fips.

3. Ensure that the cryptographic algorithms defined in the configuration file for the default-settings
element and the profiles element are compatible with FIPS mode. For FIPS-compatible algorithms,
see Appendix E.

4. Save the configuration file and stop the Connection Broker if it is running:

$ ssh-broker-ctl stop

5. Start a new connection. You may then verify the new Connection Broker is running in FIPS mode
with:

$ ssh-broker-ctl status

Note

On Unix, you can switch all Tectia products to FIPS mode by creating a file named /etc/ssh2/
FIPSMODE. Note that while the FIPSMODE file is present, all Tectia products will be in FIPS mode
regardless of their configurations the next time they are restarted.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

FIPS-Certified Cryptographic Library 43

On Linux and Solaris you can enable and disable FIPSMODE file by running the following
commands respectively:

/opt/tectia/sbin/ssh-modeset fips-mode on

/opt/tectia/sbin/ssh-modeset fips-mode off

You may then verify your current FIPS mode with:

/opt/tectia/sbin/ssh-modeset fips-mode-check

3.6.3 FIPS-Certified Cryptographic Library

Tectia products can be operated in FIPS mode, using a version of the cryptographic library that has been
certified according to the Federal Information Processing Standard (FIPS) 140-2.

The full OpenSSL cryptographic library is distributed with Tectia Client. This OpenSSL FIPS-certified
cryptographic library is used to provide the classes of functions listed in the following tables.

The functions from the OpenSSL 3.0.12 24 Oct 2023 (FIPS provider: 3.0.9) used on Linux, Windows,
and Solaris are listed in Table 3.1.

Table 3.1. APIs used from the OpenSSL cryptographic library version 3.0

API Description Functions from OpenSSL

Random numbers AES/CTR DRBG based on
NIST SP800-90A is used from
the OpenSSL library.

RAND_bytes, RAND_add

Ciphers aes-ecb, aes-cbc, aes-ofb,
aes-ctx, aes-gcm 3des-
(ecb,cbc,cfb,ofb)

EVP_CIPHER_CTX_*, EVP_Cipher*

Math library Bignum math library used by
OpenSSL.

BN_*

Diffie Hellman DH, ECDH, curve25519,
curve448

EVP_PKEY_*, DH_*

Hash functions Variants: sha1[verify only],
sha224, sha256, sha384, sha512

EVP_MD_*, EVP_sha*, EVP_Digest*

Public Key Variants: RSA, DSA, ECDSA,
Ed25519

EVP_PKEY_*, i2d_DSA_SIG,
d2i_DSA_SIG, i2d_ECDSA_SIG,
d2i_ECDSA_SIG, EVP_MD_*,
ECDSA_SIG_*, DSA_SIG_*,
EC_GROUP_*, EC_POINT_*

Misc ERR_error_string_n, ERR_get_error,
OpenSSL_version OSSL_PARAM_*,
OSSL_PROVIDER_*, CRYPTO_free,
CONF_modules_load_file_ex,
EVP_default_properties_enable_fips

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

44 Chapter 3 Getting Started with Tectia Client

No certificate functions are used from the OpenSSL library. Tectia provides its own certificate libraries.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

45

Chapter 4 Authentication

The Secure Shell protocol used by the Tectia client/server solution provides mutual authentication – the
client authenticates the server and the server authenticates the client user. Both parties are assured of the
identity of the other party.

The remote Secure Shell server host can authenticate itself using either traditional public-key
authentication or certificate authentication.

Different methods can be used to authenticate Secure Shell client users. These authentication methods
can be combined or used separately, depending on the level of functionality and security you want.

host-based password

Keyboard-
Interactive

SecurID
PAM RADIUS

other password

plain
public key certificate

public key GSSAPI

Kerberos

Figure 4.1. User authentication methods

User authentication methods used by Tectia Client by default are: public-key, password, keyboard-
interactive, and GSSAPI authentication. Public-key and certificate authentication are combined into the
public-key authentication method.

When several interactive authentication methods are defined as allowed, Tectia Client will alternate
between the methods and offers each of them in turn to the server in case the previous method failed. This
makes it possible to define different authentication methods for different users, and they can be handled
with the same server configuration.

4.1 Supported User Authentication Methods

The following user authentication methods are supported in the Tectia client/server solution.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

46 Chapter 4 Authentication

Table 4.1. User authentication methods supported by the Tectia client/server
solution

Tectia Server Tectia ClientAuthentication
method Unix Windows Unix Windows

Passworda x x x x
Public-key x x x x
Certificate x x x x
Host-based x x x
Keyboard-
interactive

x x x x

PAMb x x x
RSA SecurIDb x x x x
RADIUSb x x x x
GSSAPI/Kerberos x x x x

aOn SELinux enabled systems, password method uses PAM internally on the server side.
b Through keyboard-interactive.

4.1.1 Compatibility with OpenSSH Keys and Certificates

By default, the Tectia client/server solution uses private and public keys stored in the IETF standard
Secure Shell v2 format. However, Tectia Client and Server can also use keys and related files in the legacy
OpenSSH format or OpenSSH certificates.

The following OpenSSH-format keys are supported:

• server host key pair and host certificate pair

• trusted server host public keys, which clients use to authenticate servers

• user private keys (used by clients to authenticate to a server)

• authorized user public keys (used by a server to authenticate users), including public-key options

• OpenSSH user and host certificates

• OpenSSH CA-keys (used by a server to authenticate certificate users, or client to authenticate servers
with host certificates)

4.2 Server Authentication with Public Keys

The server is authenticated with a digital signature based on an RSA, DSA, ECDSA, or Ed25519 public-
key algorithm. At the beginning of the connection, the server sends its public key to the client for
validation.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Host Key Storage Formats 47

Server authentication is done during Diffie-Hellman key exchange through a single public-key operation.
When public-key authentication is used to authenticate the server, the first connection is very important.
During the first connection the client will display a message similar to the one in Figure 4.2.

Figure 4.2. Tectia Client on Windows – first connection to a remote host

Caution

Never save a host public key without verifying its authenticity!

To help you to verify the identity of the server host, the message displays a fingerprint of the host's
public key. The fingerprint is represented using the SSH Babble format, and it consists of a series of
pronounceable five-letter words in lower case and separated by dashes.

Verify the validity of the fingerprint, for example by contacting the administrator of the remote host
computer (preferably by telephone) and asking the administrator to verify that the key fingerprint is
correct. If the fingerprint is not verified, it is possible that the server you are connecting to is not the
intended one (this is known as a man-in-the-middle attack).

After verifying the fingerprint, it is safe to continue connecting. Relevant information about the server
public key will then be stored on the client-side machine. On Tectia Client on Unix it is stored in the
$HOME/.ssh2/hostkeys directory. On Tectia Client on Windows it is stored in the %APPDATA%\SSH
\HostKeys directory.

The stored information on the host keys is used in subsequent connections to those remote hosts. Tectia
Client checks which type of a host key (DSA, RSA, ECDSA or Ed25519) it possesses for a particular
server, and automatically chooses the key exchange algorithm to be used in the connection between the
client and server accordingly. This makes it quicker to connect to hosts for which only one type of host
key has been stored.

When auth-server-publickey is set to some other policy than strict (as it is by default), if logging
is enabled for the Connection Broker, Tectia Client will log information about changed and new host
public keys with their fingerprints in the syslog (on Unix) or Event Viewer (on Windows).

4.2.1 Host Key Storage Formats

When the host key is received during the first connection to a remote host (or when the host key has
changed) and you choose to save the key, its file name is stored in hashed format, keys_hhh..., where

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

48 Chapter 4 Authentication

hhh is a hash of the host port and name. The saved file contains a hash of the host's public key. A salt is
included in the hash calculations. The value of the salt is stored in the file salt in the same directory as
the host keys ($HOME/.ssh2/hostkeys on Unix, %APPDATA%\SSH\HostKeys on Windows). The hashed
host key format is a security feature to make address harvesting on the hosts difficult.

In the plain (traditional) format, the name of a host key file includes the host's name and port, as in
key_22_host.example.com.pub, and the file contains the host's public key in plaintext format.

The storage format can be controlled with the filename-format attribute of the known-hosts element
of the ssh-broker-config.xml configuration file. The attribute value must be plain or hash (default).

<known-hosts path="$HOME/.ssh2/hostkeys" filename-format="plain" />

If you are adding the keys manually, the keys should be named with the key_<port>_<host>.pub pattern,
where <port> is the port the Secure Shell server is running on and <host> is the host name you use when
connecting to the server (for example, key_22_alpha.example.com.pub).

If both the hashed and plaintext format keys exist, the hashed format takes precedence.

Note that the host identification is different based on the host name and port the client is connecting to.
The host name can occur in four different formats:

• Fully qualified domain name (FQDN)

• Short host name

• IPv4 address

• IPv6 address

The host key for each name format has to be saved separately, as they are not mutually exchangeable.

The host key is saved under the host name format used in the login. For example, if you want to use all
the host name formats when connecting to a remote host named alpha, connect to the host first with the
following commands and save the host key under all four names:

• sshg3 user@alpha

produces the key with the short host name (in plain format key_22_alpha.pub)

• sshg3 user@alpha.example.com

produces the key with FQDN (in plain format key_22_alpha.example.com.pub)

• sshg3 user@10.1.101.10

produces the key with IPv4 address (in plain format key_22_10.1.101.10.pub)

• sshg3 user@fd00:10:1:103::1:2f69

produces the key with IPv6 address (in plain format
key_22_fd000010000101030000000000012f69.pub)

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Using the System-Wide Host Key Storage 49

When connecting to a server using its IPv6 address, the IPv6 address given to Tectia
Client is canonicalized without the colons, and the canonical format is used in the known
host key file name. For example, the plain format host key file for ::1#10022 would be
key_10022_00000000000000000000000000000001.pub. The canonical format is also used in the
process of saving and reading hashed host keys.

Also if you need to connect to the same host but different port, your client needs a separate host key for
that purpose; for example key_22_alpha.pub and key_222_alpha.example.com.pub.

After the first connection, the locally stored information about the server public key will be used in server
authentication.

4.2.2 Using the System-Wide Host Key Storage

If a host key is not found in the user-specific host key directory, it is next searched on Unix from the /
etc/ssh2/hostkeys directory, on Windows from the C:\ProgramData\SSH\HostKeys directory. Host
key files are not automatically put in the system-wide directory but they have to be updated manually by
the system administrator (root).

The process for distributing the host keys manually is explained in the following. The instructions
reflect the Unix file paths but are applicable also to Windows. Simply replace the Unix paths with the
corresponding Windows paths.

Storing Keys in the Hashed Format

To obtain and store hashed remote host keys in the system-wide storage:

1. Select a client-side user whose $HOME/.ssh2/hostkeys will be the basis for the system-wide /etc/
ssh2/hostkeys. The user should have administrative privileges, as placing the keys to the system-
wide location requires them.

The same user account must also be used to maintain the system-wide /etc/ssh2/hostkeys later
on if the host key on some server changes. The process is to maintain the user's host keys in the
$HOME/.ssh2/hostkeys directory and then replicate the changes to the system-wide /etc/ssh2/
hostkeys directory.

2. Make sure that the $HOME/.ssh2/hostkeys directory is empty when obtaining the keys for the first
time, or that the saved host keys are intentional.

If you need to obtain new keys later, the same $HOME/.ssh2/hostkeys/salt file has to be used.

3. Connect with Tectia Client to the remote server, verify the fingerprint, and save the key.

Repeat this step as many times as there are remote servers. Note that you do not have to complete the
user authentication, only the key exchange part of the Secure Shell connection.

4. Once you have obtained all the host keys you wish to maintain in the system-wide location, place the
keys to the system-wide location, for example by running the following commands:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

50 Chapter 4 Authentication

mkdir /etc/ssh2/hostkeys

cp -p $HOME/.ssh2/hostkeys/* /etc/ssh2/hostkeys

Note that also the salt file ($HOME/.ssh2/hostkeys/salt) has to be copied so that Tectia Client is
able to identify the hashed host keys. Also if multiple users contribute to the system-wide /etc/ssh2/
hostkeys directory, they have to share the same salt file.

After creating the system-wide location for host keys, you can maintain it by using the ssh-keygen-g3 tool.

The following copy examples show the most frequently needed commands for host key storage
maintenance. The commands use the user-specific hostkey storages ($HOME/.ssh2/hostkeys and
possibly the $HOME/.ssh/known_hosts file) as the source. If keys are to be copied from a different source,
you need to append an appropriate --hostkeys-directory or --hostkey-file option to the command.

To copy the key of a new host called 'alpha' from the user-specific hostkey storage to the system-wide
directory, enter command:

ssh-keygen-g3 --append=no --overwrite=no \

--copy-host-id alpha /etc/ssh2/hostkeys

In this case, because of --overwrite=no, if a key for server 'alpha' already exists, the command will fail
and the key will not be updated.

To add additional keys to a known host, enter command:

ssh-keygen-g3 --append=yes --copy-host-id alpha /etc/ssh2/hostkeys

To update the key of a known host, enter command:

ssh-keygen-g3 --append=no --copy-host-id alpha /etc/ssh2/hostkeys

To remove a host from the known hosts list, enter command:

ssh-keygen-g3 --hostkeys-directory /etc/ssh2/hostkeys \

--delete-host-id alpha

For more detailed information on the ssh-keygen-g3 tool, see ssh-keygen-g3(1).

Storing Keys in the Plain Format

To obtain and store traditional remote host keys in the system-wide storage:

1. As a server-side user, copy the /etc/ssh2/hostkey.pub file from the server as
key_<port>_<hostname>.pub to the /etc/ssh2/hostkeys/ directory on the client.

You can do this as a non-privileged user on the server but you must be a privileged user, for example
root, on the client.

2. Use secure means to transfer the file or verify that the fingerprint matches after the transfer with the
ssh-keygen-g3 option -F (or --fingerprint), for example on Tectia Server on Unix:

$ ssh-keygen-g3 -F /etc/ssh2/hostkey.pub

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Resolving Hashed Host Keys 51

On the client:

ssh-keygen-g3 -F /etc/ssh2/hostkeys/key_<port>_<hostname>.pub

Note that the identification is different based on the host and port the client is connecting to. Also
connection with IP is considered a different host as well as connection to same host but different port.
You can copy the same traditional key_<port>_<hostname>.pub to all these different names.

4.2.3 Resolving Hashed Host Keys

Tectia Client includes a tool to resolve which hashed host key belongs to which server. As there can be
several server host keys stored on the client-side host, and the file name does not show the server name,
it is sometimes necessary to check if a certain server public key is stored on the client host.

In Tectia Connections Configuration GUI, the tool is available on the Host Keys page. See the section
called “Managing Host Keys”.

On the command line, the command syntax is:

ssh-keygen-g3 -F host_name[#port]

For example:

ssh-keygen-g3 -F examplehost#222

The host_name can be the fully qualified domain name, short host name, or the IP address of the remote
host. The port definition is optional in the command. If no port is given, the default Secure Shell port
22 is assumed.

The tool shows the location, fingerprint (in the SSH babble format) and type (RSA, DSA, ECDSA or
Ed25519) of the requested host's public key or keys. For example:

ssh-keygen-g3 -F examplehost

Fingerprint for key 'examplehost':

 (from location

 /home/user44/.ssh2/hostkeys/keys_bf53882dc47bb767edf161a4f636917f8358d635)

xuvin-zitil-ducid-gevil-vysok-buviz-nynun-pinat-tylev-gusez-dyxix (RSA)

If no keys are found for the given server, the ssh-keygen-g3 -F command will report where it looked for
the keys, and will conclude as follows:

/ No keys found from any key directories or known_hosts files.

You can define several file locations to be checked for host keys. For more information, see Section 4.2.4.

4.2.4 Using the OpenSSH known_hosts File

Tectia Client supports also the OpenSSH-style known_hosts file that contains the public key data of
known server hosts, and reads the file by default from the default location, from the user-specific file
$HOME/.ssh/known_hosts or from the system-wide file /etc/ssh/ssh_known_hosts. Both hashed and
plain-format host keys are supported.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

52 Chapter 4 Authentication

In case you wish to define other files to be used for the known host keys, you can specify the files in the
Connection Broker configuration file ssh-broker-config.xml by using the known-hosts element.
Several file locations can be defined to be checked for known host keys, and the Connection Broker will
read them in the order they are defined in the ssh-broker-config.xml file. Since the configuration file
settings will override the default behavior, you need to define also the default locations of the OpenSSH-
style known_hosts file, in case you want them all to be read. For example:

<general>

 ...

 <known-hosts path="/home/username/.ssh/known_hosts" />

 <known-hosts path="/etc/ssh/ssh_known_hosts" />

 <known-hosts path="/home/.ssh2/hostkeys" />

 <known-hosts path="/u/username/.ssh2/hostkeys" />

</general>

You can disable OpenSSH known_hosts file handling by defining an empty setting: known-hosts
path="". After this, only the Tectia-related hostkey directories will be used.

The OpenSSH known_hosts file is never automatically updated by Tectia Client. New host keys are always
stored in the Tectia $HOME/.ssh2/hostkeys directory or in the directory configured as the last one in
ssh-broker-config.xml. See known-hosts for details.

4.3 Server Authentication with Certificates

Server authentication with certificates happens similarly to server authentication with public keys, except
that the possibility of a man-in-the-middle attack during the first connection to a particular server is
eliminated. The signature of a certification authority in the server certificate guarantees the authenticity
of the server certificate even in the first connection.

A short outline of the server authentication process with certificates is detailed below:

1. The server sends its certificate (which contains a public key) to the client. The packet also contains
random data unique to the session, signed by the server's private key.

2. As the server certificate is signed with the private key of a certification authority (CA), the client can
verify the validity of the server certificate by using the CA certificate.

3. The client checks that the certificate matches the name or the IP address of the server. When
endpoint identity check is enabled in the Connection Broker configuration (either in the ssh-broker-
config.xml file with the cert-validation attribute end-point-identity-check, or in the Tectia
Connections Configuration GUI CA Certificates page with the Enable endpoint identity check
option) the client compares the server's host name or IP address to the Subject Name or Subject
Alternative Name (DNS Address) specified in the server certificate.

If endpoint identity check is disabled in the Connection Broker configuration, the fields in the server
host certificate are not verified and the certificate is accepted based on the validity period and CRL
check only.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Managing CA Certificates with the Configuration File (Unix) 53

Caution

Disabling the endpoint identity check on the client is a security risk. Then anyone with a
certificate issued by the same trusted CA that issues the server host certificates can perform
a man-in-the-middle attack on the server.

Endpoint identity check can also be configured to make Tectia Client ask the user to either accept or
cancel the connection if the server's host name does not match the one in the certificate.

4. The client verifies that the server has a valid private key by checking the signature in the initial packet.

During authentication the system checks that the certificate has not been revoked. This can be done either
by using the Online Certificate Status Protocol (OCSP) or a certificate revocation list (CRL), which can
be published either in an LDAP or HTTP repository.

OCSP is automatically used if the certificate contains a valid Authority Info Access extension, or an
OCSP responder has been separately configured. If no OCSP responder is defined or the OCSP connection
fails, CRLs are used. If LDAP is used as the CRL publishing method, the LDAP repository location can
also be defined in the ssh-broker-config.xml file.

4.3.1 Managing CA Certificates with the Configuration File (Unix)

When configuring the client, it must be set up to trust the CA certificate and to access the certificate
revocation list (CRL).

To configure the client to trust the server's certificate, perform the following tasks:

1. Copy the CA certificate(s) to the client machine. You can either copy the X.509 certificate(s) as such,
or you can copy a PKCS #7 package including the CA certificate(s).

Certificates can be extracted from a PKCS #7 package by specifying the -7 flag with ssh-keygen-g3.

2. Define the CA certificate(s) to be used in host authentication in the ssh-broker-config.xml file
under the general element:

<cert-validation end-point-identity-check="yes"

 http-proxy-url="http://proxy.example.com:800">

 <ldap-server address="ldap://ldap.example.com:389" />

 <ocsp-responder url="http://ocsp.example.com:8090" validity-period="0" />

 <dod-pki enable="no" />

 <ca-certificate name="ssh_ca1"

 file="ssh_ca1.crt"

 disable-crls="no"

 use-expired-crls="100" />

</cert-validation>

The client will only accept certificates issued by the defined CA(s) or its subordinate CA(s). Typically,
Authority Info Access URI from the server certificate is used to construct a validation path to the

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

54 Chapter 4 Authentication

trusted CA. It is also possible to configure LDAP Server or add the intermediate CA certificate(s) to
the user config directory as extra certificates if AIA does not exist in the certificates themselves.

You can disable the use of CRLs by setting the disable-crls attribute of the ca-certificate
element to "yes".

Note

CRL usage should only be disabled if the CA issues short-lived certificates or for testing
purposes. Otherwise it is highly recommended to always use CRLs.

Also define the LDAP server(s) or OCSP responder(s) used for CRL checks. Defining the LDAP server
is not necessary if the CA certificate contains a CRL distribution point extension.

3. If the CA services (OCSP, CRL) are located behind a firewall, define also the SOCKS server in the ssh-
broker-config.xml file. The SOCKS server is defined inside cert-validation with the socks-
server-url element.

4.3.2 Managing CA Certificates with the GUI

Using the Tectia Connections Configuration GUI to manage CA certificates is described in the section
called “Managing CA Certificates”.

4.4 User Authentication with Passwords

The password authentication method is the easiest to implement, as it is set up by default. Since all
communication is encrypted, passwords are not available for eavesdroppers.

On a Unix system, password authentication uses the /etc/passwd or /etc/shadow file, depending on
how the passwords are set up. The shadow password files can be used on Linux and Solaris servers, but
not on AIX servers.

On Windows, password authentication uses the Windows password to authenticate the user at login time.
Also, if the SSH server allows it, users with administrator privileges may retain their permissions by
adding elevated, before their user name. For example:

$ sshg3 elevated,Administrator@example.com

4.4.1 Defining Password Authentication with the Configuration File
(Unix)

To enable password authentication on the client, the authentication-methods element of the ssh-
broker-config.xml file must contain an auth-password element:

<authentication-methods>

...

<auth-password />

...

</authentication-methods>

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Using Stored Passwords in Connection Profiles 55

Other authentication methods can be listed in the configuration file as well. Place the least interactive
method first.

4.4.2 Using Stored Passwords in Connection Profiles

In connection profiles that will be used in non-interactive connections, it is also possible to use passwords
stored to the Tectia Client configuration or to the system.

In the Connection Broker configuration file ssh-broker-config.xml, the stored passwords are
configured with the password element, with the following syntax:

<profiles>

 <profile>

 <authentication-methods>

 <auth-password />

 </authentication-methods>

 ...

 <password file="path/to/file" />

 </profile>

...

</profiles>

The password element can be used to specify a user password that the client will send as a response to
password authentication.

The password can be given directly in the string attribute, but safer alternatives are to define either a
path to a file containing the password in the file attribute, or to use the command attribute to define a
path to a program or script that outputs the password.

When using the command attribute to refer to a shell script, make sure the script also defines the user's
shell, and outputs the actual password. Otherwise the executed program fails, because it does not know
what shell to use for the shell script. For example, if the password string is defined in a file named
my_password.txt, and you want to use the bash shell, include these lines in the script:

#!/usr/bash

cat /full/pathname/to/my_password.txt

Caution

If the password is given using this option, it is extremely important that the ssh-broker-
config.xml file, the password file, or the program are not accessible by anyone else than the
intended user.

Note

Any password given with the command-line options will override this setting.

Via the Tectia Connections Configuration GUI, the stored passwords are configured on the Connection
profiles → Authentication tab. Select Store password for non-interactive use and define the password
or the path to the password file or program.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

56 Chapter 4 Authentication

Caution

If you choose to use stored passwords, it is extremely important that the Tectia Client host and
the password file or program are not accessible by anyone else than the intended user.

Figure 4.3. Configuring authentication methods for the profile

To store the password as such in the configuration, enter the password directly in the Password field.

To use a file containing the password, select Password file and enter the path to the file in the field.

To use a program or a script that outputs the password, select Password program and enter the path to
the program in the field.

Note

The user is required to have adequate permissions to the password file and to the password
program. The file or the program executable must be owned by the user, local administrator or
a member in the local admin group, and the file must have the allow-type permissions for
administrators.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Managing Authentication Methods with the GUI 57

4.4.3 Managing Authentication Methods with the GUI

Using the Tectia Connections Configuration GUI to manage authentication methods is described in the
section called “Defining Authentication”.

4.5 User Authentication with Public Keys

Public-key authentication is based on the use of digital signatures. Each user creates a pair of key files.
One of these key files is the user's public key, and the other is the user's private key. The server knows
the user's public key, and only the user has the private key.

The key files must be stored in a location where the user has the write rights, (and read rights),
but that is not accessible to others. These user-specific rights are required for the key.pub file, the
authorized_keys directory, and for the authorization file, if used.

When the user tries to authenticate, the client sends a signature to the server, and the server checks for
matching public keys. If the key is protected with a passphrase, the server requests the user to enter the
passphrase.

Remember that your private-key file is used to authenticate you. Keep your private-key file in a secure
place and make sure that no one else has access to it. If anyone else can access your private-key file, they
can attempt to log in to the remote host computer pretending to be you. Define a passphrase to protect
your private key, whenever possible. On a machine shared by several users, make sure that the permission
settings do not allow others to access your private key.

Caution

Do not store your private keys in a location accessible to other users.

Also note that if you are using the Windows roaming profiles functionality, your personal settings will be
replicated with the roaming profile server. If you store your private keys in the default location (under the
profile folder of your Windows user account) your private keys may be susceptible to a malicious user
listening to the network traffic. Therefore the User Settings folder should not be a directory that is used
in profile roaming.

To use public-key authentication with Tectia Client, do the following actions:

1. Generate a key pair. You can generate your own key files with the help of a built-in Public-Key
Authentication Wizard on Windows (see Section 4.5.3), or with ssh-keygen-g3 on Unix or Windows
command line (see Section 4.5.1).

You can also import existing keys on the Keys and Certificates page of the Tectia Connections
Configuration GUI. See the section called “Managing Keys and Certificates”.

2. Upload your public key to the remote host computer. On Windows, you can do this automatically (see
the section called “Uploading Public Keys Automatically”). On Unix and Windows, you can also copy
the public key manually (see Section 4.5.2).

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

58 Chapter 4 Authentication

In the instructions in the following sections,

• Server is the remote host running the Secure Shell server that you are trying to connect to.

• ServerUser is the user name on Server that you are logging in as.

• Client is the host running the Secure Shell client (Tectia Client).

• ClientUser is the user name on Client that should be allowed to log in to Server as ServerUser.

Tectia Client
private key public key

ClientUser

Client
ServerUser

Server

Secure Shell v2 server

Figure 4.4. User public-key authentication

The instructions assume that ClientUser is allowed to log in to Server as ServerUser using some other
authentication method (usually password).

4.5.1 Creating Keys with ssh-keygen-g3

To create a public key pair, run ssh-keygen-g3 on Client:

$ ssh-keygen-g3

Generating 3072-bit rsa key pair

 9 oOo.oOo.oOo

Key generated.

3072-bit rsa, ClientUser@Client, Mon Aug 15 2022 12:08:07 +0200

Passphrase :

Again :

Private key saved to /home/ClientUser/.ssh2/id_rsa_3072_a

Public key saved to /home/ClientUser/.ssh2/id_rsa_3072_a.pub

When run without options, ssh-keygen-g3 asks for a passphrase for the new key. Enter a sufficiently long
(20 characters or so) sequence of any characters (spaces are OK).

Note

In FIPS mode, due to a FIPS regulation which forbids exporting unencrypted private keys out
of the FIPS module, it is not possible to generate user keys without a passphrase.

The new authentication key pair consists of two separate files. One of the keys is your private key which
must never be made available to anyone but yourself. The private key can only be used together with the
passphrase.

On Unix, the key pair is by default stored in your $HOME/.ssh2 directory (created by ssh-keygen-g3
if it does not exist previously). On Windows, the key pair is by default stored in your %APPDATA%\SSH
\UserKeys directory.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Uploading Public Keys Manually 59

In the example above, the private key file is id_rsa_3072_a. The public key file is id_rsa_3072_a.pub,
and it can be distributed to other computers.

By default, ssh-keygen-g3 creates a 3072-bit RSA key pair. DSA, ECDSA or Ed25519 keys can be
generated by specifying the -t option with ssh-keygen-g3. Key length can be specified with the -b option.
For automated jobs, the key can be generated without a passphrase with the -P option, for example:

$ ssh-keygen-g3 -t ecdsa -b 384 -P

For more information on the ssh-keygen-g3 options, see ssh-keygen-g3(1).

4.5.2 Uploading Public Keys Manually

All commands in this section are shown using sshg3 and scpg3 from the machine running Tectia Client.
Server-side configuration can also be done by logging in to the remote server and entering the commands
locally.

To enable public-key authentication with your key pair:

1. Place your keys in a directory where the Connection Broker can locate them.

By default, the Connection Broker attempts to use each key found in the $HOME/.ssh2 directory on
Unix, or in the %APPDATA%\SSH\UserKeys and %APPDATA%\SSH\UserCertificates directories on
Windows.

You can also add other directory locations for keys on the Keys and Certificates page of the Tectia
Connections Configuration GUI. See the section called “Managing Keys and Certificates”. On Unix,
you can use the general/key-stores/key-store element in the ssh-broker-config.xml file. See
the section called “Key Store Configuration Examples”.

2. (Optional) Create an identification file.

Using the identification file is not necessary if all your keys are stored in the default directory and
you allow all of them to be used for public-key and/or certificate authentication. If the identification
file does not exist, the Connection Broker attempts to use each key found in the default directory. If
the identification file exists, the keys listed in it are attempted first.

Create a file called identification, on Unix in your $HOME/.ssh2 directory, or on Windows in your
%APPDATA%\SSH directory.

Edit it with your favorite text editor to include the following line (replace id_rsa_3072_a with the
file name of the private key):

IdKey id_rsa_3072_a

The keys are assumed to be in the same directory with the identification file, but also an absolute
or a relative path can be given. For example, on Windows:

IdKey UserKeys\id_rsa_3072_a

The identification file can contain several key IDs. For more information on the syntax of the
identification file, see $HOME/.ssh2/identification .

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

60 Chapter 4 Authentication

3. Connect to Server using some other authentication method and create a .ssh2 (and .ssh2/
authorized_keys), or a .ssh directory under your home directory if it does not exist already.

Depending on the server version the remote host is running, run one of the following commands:

• Tectia Server on Unix or z/OS:

$ sshg3 ServerUser@tectia_server mkdir .ssh2

If you do not want to use an authorization file on Tectia Server 5.x or later on Unix, create also the
authorized_keys directory:

$ sshg3 ServerUser@tectia_unix mkdir .ssh2/authorized_keys

• Tectia Server on Windows:

$ sshg3 ServerUser@tectia_win "cmd /c mkdir .ssh2"

If you do not want to use an authorization file on Tectia Server 5.x or later on Windows, create also
the authorized_keys directory:

$ sshg3 ServerUser@tectia_win "cmd /c mkdir .ssh2\authorized_keys"

• OpenSSH server on Unix or z/OS:

$ sshg3 ServerUser@open_server mkdir .ssh

4. Copy the public key to Server.

Depending on the server version the remote host is running, do one of the following actions:

• Tectia Server 5.x or later on Unix and Windows:

Use SCP to upload your public key to the server, to your authorized_keys directory (by default
$HOME/.ssh2/authorized_keys on Unix servers, or %USERPROFILE%\.ssh2\authorized_keys
on Windows servers):

$ scpg3 id_rsa_3072_a.pub ServerUser@tectia_server:.ssh2/authorized_keys/

• Tectia Server 4.x on Unix and Windows:

Use SCP to upload your public key to the server (by default to the $HOME/.ssh2 directory on Unix
and to the %USERPROFILE%\.ssh2 directory on Windows servers):

$ scpg3 id_rsa_3072_a.pub ServerUser@tectia4x_server:.ssh2/

• Tectia Server for IBM z/OS:

The public key must be converted to the EBCDIC format. This can be done by including the scpg3
dst-site command-line option, or the sftpg3 site commands in the file transfer command. For
more information on the site parameters, see Section 5.3.1.

Use SCP to upload your public key to the server (by default to the $HOME/.ssh2 directory):

$ scpg3 --dst-site="C=ISO8859-1,D=IBM-1047,X=TEXT" id_rsa_3072_a.pub \

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

61

ServerUser@tectia_zos:$HOME/.ssh2/

• OpenSSH server on Unix:

Use SCP to upload your public key to the server, to your $HOME/.ssh directory:

$ scpg3 id_rsa_3072_a.pub ServerUser@open_unix:.ssh/

5. Create an authorization or authorized_keys file on Server.

Depending on the server version the remote host is running, do one of the following actions:

• Tectia Server 5.x or later on Unix and Windows do not require an authorization file if the public
keys are stored in the user's authorized_keys directory. However, an authorization file may be
optionally used. See instructions for creating the file below in the Tectia Server 4.x information.

• Tectia Server 4.x on Unix and Windows and Tectia Server for IBM z/OS require an authorization
file stored in the user's .ssh2 directory. The authorization file specifies the public keys that are
authorized for login.

Add the key entry to the authorization file. On a Unix or z/OS server:

$ sshg3 ServerUser@tectia_server4x "echo Key id_rsa_3072_a.pub >> \

.ssh2/authorization"

On a Windows server:

$ sshg3 ServerUser@tectia4x_win "cmd /c echo Key id_rsa_3072_a.pub >> \

.ssh2\authorization"

An example authorization file is shown below (by default $HOME/.ssh2/authorization on Unix
and z/OS servers, and %USERPROFILE%\.ssh2\authorization on Windows servers):

Key id_rsa_3072_a.pub

This directs Tectia Server to use id_rsa_3072_a.pub as a valid public key when authorizing your
login.

• OpenSSH server requires that the public key is converted to the OpenSSH public-key file format
and stored in the authorized_keys file in the user's .ssh directory.

Convert the public key to the OpenSSH public-key file format on the server and append it to your
$HOME/.ssh/authorized_keys file. This can be done with a remote command on an OpenSSH
server as follows:

$ sshg3 ServerUser@open_server "ssh-keygen -i -f id_rsa_3072_a.pub >> \

.ssh/authorized_keys"

6. Make sure that public-key authentication is enabled in the ssh-broker-config.xml file (it is enabled
by default).

<authentication-methods>

 <auth-publickey />

...

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

62 Chapter 4 Authentication

</authentication-methods>

Other authentication methods can be listed in the configuration file as well. Place the least interactive
method first.

Assuming Server is configured to allow public-key authentication to your account, you should now be
able to log in from Client to Server using public-key authentication.

Try to log in:

Client$ sshg3 Server

You should be prompted for the passphrase of the private key. After you have entered the passphrase, a
Secure Shell connection will be established.

4.5.3 Creating Keys with the Public-Key Authentication Wizard

On Windows and Linux, you can use the Tectia Public-Key Authentication Wizard to generate a key
pair and to upload a public key to a host, see the section called “Public-Key Generation” and the section
called “Uploading Public Keys Automatically”. The wizard will generate two key files, your private key
and your public key.

The new private and public key will be stored on your local computer in the %APPDATA%\SSH\UserKeys
directory on Windows and in the $HOME/.ssh2/ directory on Linux. The private key file has no file
extension, and the public key has the same base file name as the private key, but with .pub as the file
extension.

Make sure that public-key authentication is allowed in the Connection Broker configuration, in the default
settings and in the relevant connection profile (it is allowed by default). For the default settings, see the
section called “Defining Authentication”, and for the connection profile, see the section called “Defining
Authentication”.

To use the key pair for public-key authentication, you have to upload the public key to the remote host
computer. If the remote host has an SFTP server running, you can automatically upload a copy of your
new public key to the server with the wizard. To upload the key automatically, see the section called
“Uploading Public Keys Automatically”. To upload the key manually, see Section 4.5.2.

Public-Key Generation

New keys are generated in the Tectia Connections Configuration GUI. Under User authentication, select
the Keys and Certificates page and click New Key to start the Public-Key Authentication Wizard.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

63

Figure 4.5. The Public-Key Authentication Wizard

Define the key properties and the required passphrase to protect your private key; you will be requested
to enter the passphrase always when using the keys to authenticate yourself.

File name

Type a unique name for the key file. Tectia Client suggest a name consisting of the user name and
the host name.

Comment

In this field you can write a short comment that describes the key pair. You can for example describe
the connection the keys are used for. This field is not obligatory, but helps to identify the key later.

Passphrase

Type a phrase that you have to enter when handling the key. This passphrase works in a similar way
to a password and gives some protection for your private key.

Note

In FIPS mode, due to a FIPS regulation which forbids exporting unencrypted private keys
out of the FIPS module, it is not possible to generate user keys without a passphrase.

Make the passphrase difficult to guess. Use ideally at least 20 characters, both letters and numbers.
Any punctuation characters can be used as well. While the passphrase or private key is never sent over
the network, a dictionary attack can be used against a private key if it is accessible locally. For ease

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

64 Chapter 4 Authentication

of use, an authentication agent is recommended instead of leaving the passphrase empty. By default
ssh-broker-g3 functions as an authentication agent.

Memorize the passphrase carefully, and do not write it down.

Retype passphrase

Type the passphrase again. This ensures that you have not made a typing error.

Click Advanced Options to define the type of the key to be generated and the key length to be different
from the defaults. By default, Tectia Client generates a pair of 3072-bit RSA keys.

In the Key Properties fields, you can make the following selections:

Key type

Select the type of the key to be generated. Available options are Ed25519 RSA (default), ECDSA
and DSA.

Note

In FIPS mode (conforming to FIPS 186-5) RSA, ECDSA and Ed25519 are supported. DSA
has been deprecated.

Key length

Select the length (complexity) of the key to be generated. Available options are:

• DSA/RSA keys: 2048, 3072, 4096, 5120, 6144, 7168, 8192 bits

• ECDSA keys: 256, 384, 521 bits

• Ed25519 keys: 256 bits

Larger keys of the same key type are more secure, but also slower to generate. A 256-bit ECDSA key
and a 3072-bit RSA key provide equivalent security.

Click Next to proceed to uploading the key as instructed in the section called “Uploading Public Keys
Automatically”.

Uploading Public Keys Automatically

Public keys can be uploaded automatically to servers that have the SFTP subsystem enabled. The Public-
Key Authentication Wizard automatically uploads each new public key to a remote host of your choice.
The wizard lists all existing keys, and you can select a key to upload it also to other remote servers at
any time.

To access the Public-Key Authentication Wizard, click User Authentication → Keys and Certificates
on the tree view.

Select a key from the Key and Certificate List and click Upload.

In the Upload Public Key view of the wizard, define the remote host where to upload the key:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Using Keys Generated with OpenSSH 65

Figure 4.6. Uploading a key

Quick connect

Select this option to define the remote Host name and your User name there. The default Secure
Shell port is 22.

Connection profile

Select from the drop-down list the connection profile that specifies the desired remote host and user
name.

Click Upload to upload the key to the selected server. If you are already connected to the remote server
host, the key upload starts immediately. If you are not connected, you will be prompted to authenticate
on the server (by default with password).

The public key will be uploaded to the default user home directory (%USERPROFILE%\.ssh2 on Windows,
$HOME/.ssh2 on Unix).

Note

The key user is required to have the write permissions to the key directory on the server,
otherwise the automatic upload will fail. The administrator of the remote host computer may
have restricted user access so that users are not able to configure public-key authentication for
themselves even if public-key authentication is allowed in the server configuration.

Even if the automatic upload succeeds, it is possible that the server administrator has configured the system
to store keys elsewhere than under the user home directory. In this case the keys and the authorization file
additions have to be moved manually to the proper directory.

If you do not use the automatic upload facility, see Section 4.5.2.

4.5.4 Using Keys Generated with OpenSSH

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

66 Chapter 4 Authentication

Tectia Client supports also user key pairs generated with OpenSSH. The OpenSSH keys can be specified
in the ssh-broker-config.xml file by using the key-stores element. An example configuration is
shown below:

<key-stores>

 <key-store type="software"

 init="key_files(/home/exa/keys/id_rsa.pub,/home/exa/keys/id_rsa)" />

 <key-store type="software"

 init="directory(path(/home/exa/.ssh))" />

</key-stores>

This example adds a key called id_rsa and all keys from the user's default OpenSSH key directory (.ssh
under the user's home directory).

You can add OpenSSH keys and directories on the Keys and Certificates page of the Tectia Connections
Configuration tool. See the section called “Managing Keys and Certificates”.

The public key can be uploaded to the server the same way as with standard SSH2 keys. See Section 4.5.2
and the section called “Uploading Public Keys Automatically”.

4.5.5 Special Considerations with Windows Servers

If you use public-key authentication to log on to a Windows domain user account on Tectia Server 5.1 or
earlier, you must give your user name as DOMAIN\user when attempting logon. On Unix command line,
the backslash has to be escaped, for example:

$ sshg3 DOMAIN\\user@win-server

With Tectia Server 5.2 and later, this is not required. When logging on to a machine that runs Tectia Server
5.2 or later, and belongs to a Windows domain, the user account is by default assumed to be a domain
account in the default domain. If you want to log on to a local account with same name instead, you have
to specify the machine name as the "domain", for example on Windows command line:

> sshg3 MACHINE\user@machine

4.6 User Authentication with Certificates

Certificate authentication is technically a part of the public-key authentication method. The signature
created with the private key and the verification of the signature using the public key (contained in the
X.509 certificate when doing certificate authentication) are done identically with conventional public keys
and certificates. The major difference is in determining whether a specific user is allowed to log in with
a specific public key or certificate. With conventional public keys, every server must have every user's
public key, whereas with certificates the users' public keys do not have to be distributed to the servers -
distributing the public key of the CA (self-signed certificate) is enough.

In brief, certificate authentication works as follows:

1. The client sends the user certificate (which includes the user's public key) to the server. The packet
also contains data unique to the session and it is signed by the user's private key.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Using the Configuration File (Unix) 67

2. The server uses the CA certificate (and external resources as required) to check that the user's certificate
is valid.

3. The server verifies that the user has a valid private key by checking the signature in the initial packet.

4. The server matches the user certificate against the rules in the server configuration file to decide
whether login is allowed or not.

4.6.1 Using the Configuration File (Unix)

To configure the client to authenticate itself with an X.509 certificate, perform the following tasks:

1. Enroll a certificate for yourself. This can be done, for example, with the ssh-cmpclient-g3 or ssh-
scepclient-g3 command-line tools.

Example: Key generation and enrollment using ssh-cmpclient-g3:

$ ssh-cmpclient-g3 INITIALIZE

-P generate://ssh2:passphrase@rsa:3072/user_rsa \

-o /home/user/.ssh2/user_rsa -p 62154:ssh \

-s 'C=FI,O=SSH,CN=user;email=user@example.org' \

-S http://fw.example.com:1080 http://pki.example.com:8080/pkix/ \

'C=FI, O=SSH, CN=Test CA 1'

2. Place your keys and certificates in a directory where the Connection Broker can locate them.

By default, the Connection Broker attempts to use each key found in the $HOME/.ssh2 directory on
Unix, or in the %APPDATA%\SSH\UserKeys and %APPDATA%\SSH\UserCertificates directories on
Windows.

You can also add other directory locations for keys on the Keys and Certificates page of the Tectia
Connections Configuration tool. See the section called “Managing Keys and Certificates”. On Unix,
you can use the general/key-stores/key-store element in the ssh-broker-config.xml file. See
the section called “Key Store Configuration Examples”.

3. (Optional) Create an identification file.

Using the identification file is not necessary if all your keys are stored in the default directory and
you allow all of them to be used for public-key and/or certificate authentication. If the identification
file does not exist, the Connection Broker attempts to use each key found in the default directory. If
the identification file exists, the keys listed in it are attempted first.

Specify the private key of your software certificate in the $HOME/.ssh2/identification file (the
CertKey option works identically with the IdKey option):

CertKey user_rsa

The certificate itself will be read from user_rsa.crt.

For more information on the syntax of the identification file, see $HOME/.ssh2/identification .

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

68 Chapter 4 Authentication

4. Make sure that public-key authentication is enabled in the ssh-broker-config.xml file (it is enabled
by default).

<authentication-methods>

 <auth-publickey />

...

</authentication-methods>

Other authentication methods can be listed in the configuration file as well. Place the least interactive
method first.

4.6.2 Configuring User Authentication with Certificates on Windows

You can configure user authentication with X.509 certificates on Windows using Tectia Connections
Configuration GUI. You also need to configure Tectia Server for user authentication with certificates, see
Tectia Server Administrator Manual.

1. Launch Tectia Connections Configuration GUI.

Right-click in the notification area of the Windows taskbar and select Configuration.

2. Under General, click Default Connection. Select the Authentication tab. Ensure that public-key
authentication is enabled and it is the first or only method in the list. By default, it is enabled.

Under Public-Key Authentication, you can select to use public keys or certificates or both in the
authentication.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

69

Figure 4.7. Enabling public-key authentication

3. If you are using connection profiles, select the profile name under Connection Profiles. Select the
Authentication tab and ensure that public-key authentication is enabled.

4. Tectia suggests installing the certificate into the Microsoft Certificate store that is a personal store
for the user.

5. Under User Authentication, select Key Providers. Enable Microsoft Crypto API and click Apply.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

70 Chapter 4 Authentication

Figure 4.8. Enabling Microsoft Crypto API as a certificate provider

You can also read certificate information from USB tokens or smartcards via Microsoft Crypto API
if they are compatible with the API. Alternatively USB tokens or smartcards can be used by enabling
PCKS#11.

6. The certificate is now loaded into the client automatically. Under User Authentication, select Keys
and Certificates. You can see the available certificates under Key and Certificate List.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

71

Figure 4.9. Viewing available certificates

Tectia Client can also read key and certificate information from the file system. These can be defined
under Additional Directories and Files.

Note

Ensure that the client certificate is set up for client authentication only. It makes
troubleshooting several certificates easier, for example, as server authentication certificates
cannot be used as user certificates.

For more information about the key and certificate settings, see the section called “Managing Keys and
Certificates”.

Troubleshooting User Authentication with Certificates

If the certificate authentication does not succeed for some reason, running Tectia Server in the
troubleshooting mode and viewing the troubleshooting log can provide a lot of information about the end-
user connection. For more information, refer to Section Starting Tectia Server in Debug mode on Windows
in the Tectia Server Administrator Manual.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

72 Chapter 4 Authentication

4.6.3 Importing PKCS Certificates with Tectia Connections
Configuration GUI

You can import existing PKCS #12, PKCS #7 and X.509 certificates on the Keys and Certificates
page under User Authentication in the Tectia Connections Configuration GUI. See the section called
“Managing Keys and Certificates”.

4.7 Host-Based User Authentication (Unix)

Host-based authentication uses the public host key of the client machine to authenticate a user to the
remote server. Host-based authentication can be used with Tectia Client on Unix. The remote Secure Shell
server can be either a Unix, Windows, or z/OS server.

Setting up host-based authentication usually requires administrator (root) privileges on the server. The
setup is explained in the Tectia Server Administrator Manual.

4.8 User Authentication with Keyboard-Interactive

Keyboard-interactive is a generic authentication method that can be used to implement different types of
authentication mechanisms. Any currently supported authentication method that requires only the user's
input can be performed with keyboard-interactive.

The supported submethods of keyboard-interactive depend on the Secure Shell server. Commonly
supported submethods include password, RSA SecurID, RADIUS, and PAM authentication.

Note

The client cannot request any specific keyboard-interactive submethod if the server allows
several optional submethods. The order in which the submethods are offered depends on the
server configuration. However, if the server allows, for example, the two optional submethods
SecurID and password, the user can skip SecurID by pressing enter when SecurID is offered by
the server. The user will then be prompted for a password.

4.8.1 Defining Keyboard-Interactive Method with the Configuration
File (Unix)

To enable keyboard-interactive authentication on Tectia Client, make sure that you have the following line
in the ssh-broker-config.xml file:

<authentication-methods>

...

 <auth-keyboard-interactive />

...

</authentication-methods>

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Defining Keyboard-Interactive Method with the GUI 73

4.8.2 Defining Keyboard-Interactive Method with the GUI

Using keyboard-interactive authentication is a Connection Broker setting. Using the Tectia Connections
Configuration GUI to manage authentication methods is described in the section called “Defining
Authentication”.

4.9 User Authentication with GSSAPI

GSSAPI (Generic Security Service Application Programming Interface) is a function interface that
provides security services for applications in a mechanism independent way. This allows different security
mechanisms to be used via one standardized API. GSSAPI is often linked with Kerberos, which is the
most common mechanism of GSSAPI.

On Linux platforms, Kerberos libraries are installed by default. They are also available for most other
Unix platforms, but have to be installed separately.

For Windows, GSSAPI offers integrated authentication for Windows 2003 (or later) networks with
Kerberos. This method utilizes domain accounts, since local accounts are not transferable across machine
boundaries.

The GSSAPI authentication method has no user interface (besides configuration). It does not ask anything
from the user. If something fails during GSSAPI exchange, the reason for the failure can be seen in the
client debug log.

4.9.1 Defining GSSAPI Method with the Configuration File (Unix)

To enable GSSAPI authentication on the client, make sure that you have the following line in the ssh-
broker-config.xml file:

<authentication-methods>

 <auth-gssapi />

...

</authentication-methods>

Other authentication methods can be listed in the configuration file as well. Place the least interactive
method first.

4.9.2 Defining GSSAPI Method with the GUI

Using the Tectia Connections Configuration GUI to manage authentication methods is described in the
section called “Defining Authentication”.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

74 Chapter 4 Authentication

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

75

Chapter 5 Transferring Files

Tectia Client and Tectia Server provide the basic secure file transfer functionality using the Secure File
Transfer Protocol (SFTP).

This chapter gives instructions on secure file transfer using the SCP and SFTP command-line tools and
the SFTP graphical user interface (GUI).

5.1 Secure File Transfer with scpg3 and sftpg3 Commands

Tectia Client provides commands scpg3 (secure copy) and sftpg3 for secure file transfer. These command-
line clients apply the Secure File Transfer Protocol (SFTP).

When files are being uploaded with commands scpg3 and sftpg3, the files have the TRUNCATE flag on.
The file size is shown as 0 until the file transfer has been completed.

These secure file transfer commands rely on the Connection Broker to take care of the cryptographic
operations and authentication tasks, so they start the Connection Broker (the ssh-broker-g3 process) in
run-on-demand mode, if the Connection Broker is not running already.

In case the scpg3 and sftpg3 command-line clients are used in scripts that start several file transfer
commands at the same time, the Connection Broker must already be running in the background. Since the
Connection Broker takes a few seconds to become up and running, make sure the scripts are not started
immediately, because they can fail if the Connection Broker is still starting.

To start the Connection Broker, run the ssh-broker-g3 command. For more information, see ssh-broker-
g3(1).

5.1.1 Using scpg3

scpg3 (scpg3.exe on Windows) is used to securely copy files over the network. scpg3 uses ssh-broker-
g3 to provide a secure transport using the Secure Shell version 2 protocol. The remote host(s) must be
running a Secure Shell version 2 server with the sftp-server (or sft-server-g3) subsystem enabled.

The basic syntax of scpg3 is:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

76 Chapter 5 Transferring Files

scpg3 user@source:/directory/file user@destination:/directory/file

scpg3 can be used to copy files in either direction; from the local system to the remote system or vice
versa. Copies between two remote hosts are also permitted. Local paths can be specified without the
user@system: prefix. Relative paths can also be used, they are interpreted in relation to the user's home
directory.

Windows paths should be preceded by a slash ("/"). For example, copying a local file to a remote Windows
server:

scpg3 localfile user@destination:/C:/directory/file

For more information on the command-line options, see scpg3(1).

5.1.2 Using sftpg3

sftpg3 (sftpg3.exe on Windows) is an FTP-like client that can be used for secure file transfers over the
network. sftpg3 uses ssh-broker-g3 to provide a secure transport using the Secure Shell version 2 protocol.

Even though it functions like ftp, sftpg3 does not use any FTP daemon or FTP client for its connections.
sftpg3 can be used to connect to any host that is running a Secure Shell version 2 server with the sftp-
server (or sft-server-g3) subsystem enabled.

The basic syntax of sftpg3 is:

sftpg3 user@host

sftpg3 has two connection end points, local and remote, and both of them can be connected to other
hosts than the Tectia Client host. By default, the local end point is connected to the file system of the
Tectia Client host and the remote end point is connected to the host defined on the command line (or left
unconnected if no host is defined on the command line).

When started interactively, sftpg3 displays a prompt where the SFTP commands can be entered, much
like in the traditional ftp program. It is also possible to start sftpg3 non-interactively with a batch file
that contains the commands to be run.

For more information on the command-line options and commands, see sftpg3(1).

5.1.3 Enhanced File Transfer Functions

The following enhanced file transfer features are available with the scpg3 and sftpg3 command-line tools
of Tectia Client:

• Checkpoint/restart for transferring large files (with any IETF-compliant SSH server)

• Prefix for ensuring that a file is fully transferred before it is used (with any IETF-compliant SSH server)

• Streaming for improved file transfer speed (with Tectia Servers)

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Secure File Transfer GUI 77

For information on the commands, see scpg3(1) and sftpg3(1).

5.2 Secure File Transfer GUI

Tectia Client provides a secure file transfer GUI that makes it easy to download files from a remote host
computer into your local computer and to upload files to a remote host.

Figure 5.1. PrivX Desktop File Transfer GUI

In the PrivX Desktop File Transfer GUI, you can use the connection profiles defined in the Connection
Broker configuration, or connect to a remote host using the Quick Connect option.

5.2.1 Downloading Files with PrivX Desktop File Transfer GUI

There are different ways to download a file, or several files at the same time. Selecting multiple files with
the Shift or Control key works the same way as in Windows Explorer.

Keyboard shortcut

Select file(s) or a directory with Shift + arrow keys and press Ctrl+S to transfer the file or directory
recursively to the other side. You can also use Ctrl+A to select all including directory entries or Ctrl
+Shift+A to select all files.

Drag and drop

Dragging and dropping is probably the easiest way to download files. Simply select the file(s) you
want to download, hold down the mouse button and move the file to a location where you want it
and release the button.

Shortcut menu

When you right-click a file in the Remote View, a shortcut menu appears. Select Download to perform
the transfer.

5.2.2 Uploading Files with PrivX Desktop File Transfer GUI

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

78 Chapter 5 Transferring Files

The file transfer window can be used to upload files from your local computer to the remote host computer.
There are different ways to upload a file, or several files at the same time. Selecting multiple files with
the Shift or Control key works the same way as in Windows Explorer.

Keyboard shortcut

Select file(s) or a directory with Shift + arrow keys and press Ctrl+S to transfer the file or directory
recursively to the other side. You can also use Ctrl+A to select all including directory entries or Ctrl
+Shift+A to select all files.

Drag and drop

Dragging and dropping is probably the easiest way to upload files. Simply click on the local file(s)
you want to upload (for example on the desktop or Windows Explorer), hold down the mouse button,
move the file(s) into the file view in the File Transfer window, and release the button.

Shortcut menu

When you right-click a file in the Local View a shortcut menu appears. Select the Upload to perform
the transfer.

5.2.3 File Properties and Preview

Selecting a file in the Local View or Remote View and pressing Ctrl+I toggles Information dialog which
allows you to view file information including SHA-2 hash and preview the file in various formats.

Figure 5.2. Properties and Preview page for a file

5.2.4 Differences from OS tools

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Controlling File Transfer 79

The file transfer window operates very much the same way as Windows Explorer or macOS Finder.
However, due to the different nature of handling files locally in your own computer with native tools and
handling them over a secured remote connection in the host computer (as per Tectia Client file transfer),
there are some differences in operation.

Caution
Delete in secure file transfer is immediate and permanent operation.

Deleting folders

Deleting a folder will delete the files and subfolders recursively immediately instead of requiring user
confirmation or moving the files to Bin as the native operating system tools typically do.

Multiple paste operations

During copy and paste operations, the file names are not changed when the files are pasted. Therefore
it is not possible to paste files several times into one location, creating multiple copies of the pasted
files as in Windows Explorer.

Note

The maximum size of transferred files is limited only by the file system. (On many systems
the maximum file size is 2 gigabytes.) However, downloading large files with drag and drop is
limited as user-specific configuration directory is used temporarily by the PrivX Desktop File
Transfer GUI. Use keyboard shortcut or shortcut menu in File Transfer View to download large
files.

5.3 Controlling File Transfer

The current Secure File Transfer Protocol (SFTP) does not transfer any information about the files to be
transferred, only the file contents as a byte stream. This is sufficient for Unix-type files if the sender and
receiver use the same CCS. However, it is possible to set specific file permissions for transferred files by
using the chmod command with command line tools.

With MVS data sets, Tectia needs more information: which transfer format to use, what code sets
are involved, and what the file characteristics are. Tectia introduces some extensions to SFTP and the
information can be relayed by using the Site commands of scpg3 and sftpg3.

For more information on MVS file transfers, see Tectia Server for IBM z/OS User Manual.

5.3.1 Site Command

For command descriptions, see the site and lsite command in sftpg3(1) and the --dst-site and --src-
site options in scpg3(1).

When giving the command, either the full parameter name or its abbreviation can be used. For example,
the following two commands accomplish the same thing:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

80 Chapter 5 Transferring Files

sftp> site x=bin

sftp> site transfer_mode=bin

The available site parameters are listed and described in the following.

Table 5.1. site parameters

Parameter Abbreviations Possible values

AUTOMOUNT - YES|NO|IMMED

[NO]AUTOMOUNT [NO]AUTOM -

AUTORECALL - YES|NO

[NO]AUTORECALL [NO]AUTOR -

BLKSIZE B, BLOCKSI size

BLOCKS BL -

CONDDISP CO CATLG|UNCATLG|KEEP|DELETE

CYLINDERS CY -

DATACLAS DA class

DATASET_SEQUENCE_NUMBER SEQNUM number

DEFER DE YES|NO

[NO]DEFER - -

DIRECTORY_SIZE M, DI, DIRSZ size

EXPIRY_DATE EXPDT yyddd | yyyyddd
FILE_STATUS STATUS NEW|MOD|SHR|OLD

FILETYPE FILET SEQ|JES

FIXRECFM FI length

JOB_ID JESID ID

JOB_OWNER JESO name

JOBNAME JESJOB name

KEYLEN KEYL length

KEYOFF KEYO offset

LABEL_TYPE LABEL NL|SL|NSL|SUL|BLP|LTM|AL|AUL

LIKE - like

LRECL R, LR length

MGMTCLAS MG class

NORMDISP NOR CATLG|UNCATLG|KEEP|DELETE

PRIMARY_SPACE PRI space

PROFILE P, PROF profile

RECFM O, REC recfm

RECORD_TRUNCATE U, TRUN YES|NO

[NO]TRUNCATE [NO]TRU, [NO]TRUN -

RETENTION_PERIOD RET days

SECONDARY_SPACE SE, SEC space

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

81

Parameter Abbreviations Possible values

SIZE L size

SPACE_RELEASE RLSE YES|NO

SPACE_UNIT SU BLKS|TRKS|CYLS|AVGRECLEN

SPACE_UNIT_LENGTH SUL length

STAGING S, STAGE YES|NO

STORCLAS ST class

SVC99_TEXT_UNITS SVC99 string

TRACKS TR -

TRAILING_BLANKS TRAIL YES|NO

[NO]TRAILINGBLANKS [NO]TRAI,

[NO]TRAIL

-

TRANSFER_CODESET C, CODESET codeset

TRANSFER_FILE_CODESET D, FCODESET codeset

TRANSFER_FILE_LINE_DELIMITER J, FLDELIM UNIX|MVS|MVS-FTP|DOS|MAC|NEL

TRANSFER_FORMAT F, FORMAT LINE|STREAM|RECORD

TRANSFER_LINE_DELIMITER I, LDELIM UNIX|MVS|MVS-FTP|DOS|MAC|NEL

TRANSFER_MODE X, MODE BIN|TEXT

TRANSFER_TRANSLATE_DSN_TEMPLATES A, XDSNT templates

TRANSFER_TRANSLATE_TABLE E, XTBL table

TYPE T PS|PO|PDS|POE|PDSE|GDG|

HFS|VSAM|ESDS|KSDS|RRN

UNIT UN unit

UNIT_COUNT UC, UNC number

UNIT_PARALLEL UNP YES|NO

VOLUME_COUNT VC, VOLCNT number

VOLUMES VO, VOL vol1+vol2+...

AUTOMOUNT=YES|NO|IMMED

If set to YES and a normal allocation fails because a data set is not online, Tectia will allocate it and
request the system to mount it. This requires that the user has read permission to the SSZ.MOUNT
facility.

If set to NO, offline data sets are not mounted automatically.

If set to IMMED, Tectia will not attempt the normal allocation, it will request the system to mount the
data set immediately.

Default: NO

[NO]AUTOMOUNT|[NO]AUTOM

AUTOMOUNT|AUTOM is equal to AUTOMOUNT=YES.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

82 Chapter 5 Transferring Files

NOAUTOMOUNT|NOAUTOM is equal to AUTOMOUNT=NO.

AUTORECALL=YES|NO

Defines whether data sets migrated by a storage manager are recalled automatically.

Default: YES

[NO]AUTORECALL|[NO]AUTOR

AUTORECALL|AUTOR is equal to AUTORECALL=YES.
NOAUTORECALL|NOAUTOR is equal to AUTORECALL=NO.

BLKSIZE|B|BLOCKSI= size

Specifies the maximum block size.

Default: none

BLOCKS|BL

Specifies that the space allocation unit is blocks. Equal to SPACE_UNIT=BLKS.

CONDDISP|CO=CATLG|UNCATLG|KEEP|DELETE

Specifies the disposition of the output file when a file transfer ends prematurely (the client or server
are alive but disconnected from the other end; for example, when pressing CTRL+C in the client).

Note

If the client (when transferring to local or client side) or the server (when transferring to
remote or server side) dies, they will have no control over the disposition.

The options have the following effects, depending on the file type (MVS or HFS):

• CATLG: an MVS data set is retained and its name is cataloged. An HFS file is retained.

• UNCATLG: the name of an MVS data set is removed from the catalog but the data set is retained.
An HFS file is retained.

• KEEP: an MVS data set is retained (if cataloged it will be still cataloged, if uncataloged it will be
still uncataloged). An HFS file is retained.

• DELETE: the name of an MVS data set is removed from the catalog and the space allocated for the
data set is released. An HFS file is deleted.

Default: CATLG

CYLINDERS|CY

Specifies that the space allocation unit is cylinders. Equal to SPACE_UNIT=CYLS.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

83

DATACLAS|DA= class

Specifies the data class of a data set.

Default: none

DATASET_SEQUENCE_NUMBER|SEQNUM= number

Identifies the relative position of a data set on a tape volume.

Default: System default

DEFER|DE=YES|NO

Specifies whether data set allocation is postponed from allocation phase to when the data set is
opened.

If set to YES data set allocation is postponed until data set is opened.

If set to NO data set is allocated in allocation phase.

Default: NO

[NO]DEFER|DE

DEFER|DE is equal to DEFER=YES.
NODEFER is equal to DEFER=NO.

DIRECTORY_SIZE|M|DI|DIRSZ= size

Specifies the number of 256-byte records in the directory.

Default: 10

EXPIRY_DATE|EXPDT= yyddd|yyyyddd

Specifies the expiration date for a new data set. On and after this date, the operating system can delete
or write over the data set.

Default: System default

FILE_STATUS|STATUS=NEW|MOD|SHR|OLD

Defines the status of a data set. If entered, the value will be used when allocating the data set. This
attribute corresponds to the first value in the DISP parameter of the JCL DD statement. Possible
values are:

• NEW: Create a data set.

• MOD: Append to an existing data set. If the data set does not exist, a new data set is created.

• SHR: Create a read-only data set.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

84 Chapter 5 Transferring Files

• OLD: Designate an existing data set.

FILETYPE|FILET=SEQ|JES

Specifies whether to interface with the file system or with the z/OS Job Entry Subsystem (JES).

Using FILETYPE=JES enables the commands put and sput to submit transferred files to the internal
reader job queue for execution, and get and sget commands to retrieve spool data sets. To terminate
interfacing with JES and return to normal file access, set the file type back to sequential (SEQ), or to
an empty string (that is, FILETYPE=). Entering an empty string as file type sets the file type to default.

Default: SEQ

FIXRECFM|FI= length

The data set organization is set to FB and the fixed record length is set to length.

Default: none

JOB_ID|JESID= ID

When in FILETYPE=JES mode, JOB_ID specifies that commands accessing the JES spool, such as
get, apply only to jobs with a job ID that matches the supplied ID.

Commands get, sget, and so on, with a job ID can be used to retrieve the spool files for a given job.

JOB_OWNER|JESO= name

When in FILETYPE=JES mode, JOB_OWNER specifies that commands accessing the JES spool, such
as ls, and get, and so on, apply only to jobs with owner matching the supplied name.

Default: Current user

JOBNAME|JESJOB= name

When in FILETYPE=JES mode, JOBNAME specifies that commands accessing the JES spool, such as
ls, get, and so on, apply only to jobs with job name matching the supplied name.

KEYLEN|KEYL= length

Specifies the length in bytes of the keys used in the data set.

Default: none

KEYOFF|KEYO= offset

Specifies the key offset; the position of the first byte of the key in records of the specified VSAM
data set.

Default: none

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

85

LABEL_TYPE|LABEL=NL|SL|NSL|SUL|BLP|LTM|AL|AUL

The type of the label for the data set. This attribute corresponds to the first value in the LABEL
parameter of the JCL DD statement.

Note

It is recommended for sites to control the use of BLP and NL tape processing by restricting
access to the appropriate resource, using RACF or an equivalent security product.

LIKE= like

Specifies the name of a model data set from which the RECFM, BLKSIZE, and LRECL attributes are
to be copied. The name must be the full DSN of a cataloged data set and must be preceded with
three underscores.

You must include the TYPE attribute when using LIKE unless you are creating a PS data set and the
model is a PS data set.

Default: none

LRECL|R|LR= length

Maximum record length or fixed record length.

Default: 4096 for VSAM, 80 if data set organization is F or FB, otherwise 1024

MGMTCLAS|MG= class

Specifies the management class of a data set.

Default: none

NORMDISP|NOR=CATLG|UNCATLG|KEEP|DELETE

Specifies the data set disposition to be used after a file transfer that ends normally. This attribute
corresponds to the second value in the DISP parameter of the JCL DD statement.

Default: CATLG

PRIMARY_SPACE|PRI= space

Primary space allocation for a data set.

Default: none

PROFILE|P|PROF= profile

The file transfer profile specifies the named profile used for the file transfer. The profile name is case-
sensitive. With special profile name P=% no profiles are used. This also prevents profile matching
based on file name.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

86 Chapter 5 Transferring Files

Default: none

RECFM|O|REC= recfm

RECFM specifies the data set organization. The possible values are all valid combinations of the
following letters:

 F Fixed

 V Variable

 U Undefined

 B Blocked

 S Spanned or standard

 M Machine line printer codes

 A ASA line printer codes

Default: VB

RECORD_TRUNCATE|U|TRUN=YES|NO

When a record truncation occurs while writing an MVS data set, the system will continue writing the
data set if RECORD_TRUNCATE is set to YES; and the system will abort the transfer if RECORD_TRUNCATE
is set to NO or omitted.

Record truncation will occur if the length of a transferred record (after code set and line delimiter
conversion) is larger than the maximum record length of the data set. Truncation can occur only when
TRANSFER_FORMAT is set to LINE or RECORD. Note that the STREAM format does not have any concept
of records in transferred data and it will fill out all records to their maximum length.

In the LINE transfer format, the length of a transferred record is the number of characters up to a
newline character.

In the RECORD format, the length of a transferred record is given by the 4 byte binary length field
which precedes the record.

The maximum length of a data set record depends on the data set organization:

 F and FB - LRECL

 V and VB - LRECL-4

 U - BLKSIZE

 VSAM - MAXRECLEN

When Tectia Client aborts writing a data set because of record truncation, it will complete the write
operation during which the system observed the truncation. It will write to disk one or more records,
at least one of which is truncated. The data set is left on the system.

Tectia Client may write a large amount of data in one write operation, typically 32kB. Several
records may be written in the last operation, some of them truncated. Small files may be written
to the end of the file, and thus the resulting data set will be equivalent to one written with setting
RECORD_TRUNCATE=YES.

Note that some file transfer client programs do not always show the error or warning messages from
the server. Using the verbose mode (--verbose, -v) may show more messages from the server.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

87

Note

When Tectia Client writes a data set with RECORD_TRUNCATE=YES, data loss may occur.

[NO]TRUNCATE|[NO]TRU|[NO]TRUN

TRUNCATE|TRU|TRUN is equal to RECORD_TRUNCATE=YES.
[NO]TRUNCATE|[NO]TRU|[NO]TRUN is equal to RECORD_TRUNCATE=NO.

RETENTION_PERIOD|RET= days

The retention period in days. After the retention period, the data set expires and the operating system
can delete or overwrite the data set.

Default: System default

SECONDARY_SPACE|SE|SEC= space

Secondary space allocation for a data set.

Default: none

SIZE|L= size

Size estimate (in bytes) for data set allocation.

Default: 1000000

SPACE_RELEASE|RLSE=YES|NO

When a new data set it allocated, SPACE_RELEASE specifies whether unused disk space will be
released. If set to YES, unused disk space of a new data set is released. If set to NO, allocated disk
space of a new data set is retained.

Default: YES

SPACE_UNIT|SU=BLKS|TRKS|CYLS|AVGRECLEN

Unit of space allocation for a data set.

Possible values for the space allocation unit are:

• BLKS: Blocks

• CYLS: Cylinders

• TRKS: Tracks

• AVGRECLEN: Average record length

Default: none

SPACE_UNIT_LENGTH|SUL= length

When SPACE_UNIT=BLKS or SPACE_UNIT=AVGRECLEN, specifies the size of the space allocation unit.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

88 Chapter 5 Transferring Files

Default: 100 with SPACE_UNIT=AVGRECLEN, none with SPACE_UNIT=BLKS

STAGING|S|STAGE=YES|NO

Specifies whether staging is to be used in the SFTP server when accessing a file or data set.

If set to NO, staging is not used.

If set to YES, staging is used, when needed.

Default: NO

Note

When staging is used, do not set the _CEE_RUNOPTS environment variable's TRAP option to
OFF. If you do, sftpg3 fails to start. The TRAP option is ON by default.

STORCLAS|ST= class

Specifies the storage class of system managed storage.

Default: none

SVC99_TEXT_UNITS|SVC99= string

Dynamic allocation arguments that override or are added to arguments from other file transfer
attributes.

Default: none

TRACKS|TR

Specifies that the space allocation unit is tracks. Equal to SPACE_UNIT=TRKS.

TRAILING_BLANKS|TRAIL=YES|NO

Specifies whether to preserve trailing blanks in a transferred data set.

If set to YES, trailing blanks will be transferred. This can be used, for example, to preserve the structure
of fixed format data sets when transferring to a Unix-type file system.

If set to NO, trailing blanks will be stripped.

Default: NO

Note

This option only applies to line-delimited target files (TRANSFER_FORMAT=LINE), not to
target unit-record data sets.

[NO]TRAILINGBLANKS|[NO]TRAI|[NO]TRAIL

TRAILINGBLANKS|TRAI|TRAIL is equal to TRAILING_BLANKS=YES.
NOTRAILINGBLANKS|NOTRAI|NOTRAIL is equal to TRAILING_BLANKS=NO.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

89

TRANSFER_CODESET|C|CODESET= codeset

During the transfer the data has the specified code set. codeset is the code set name that is known
to the iconv function of the system performing the conversion. The available code sets can be listed
by invoking the iconv command at a USS prompt with the -l option:

> iconv -l

Default: none

Example: A Windows SFTP client puts a file to a z/OS data set and gets a data set from z/OS

sftp> site C=ISO8859-1 D=IBM-1047 ❶

sftp> sput file.txt //DATASET.TXT ❷

sftp> sget //DATASET.TXT file.txt ❸

❶ The z/OS server is told that the code set during transfer is ISO8859-1 and that the data set is
stored on the server with the IBM-1047 code set.

❷ The server converts the code set from ISO8859-1 to IBM-1047 upon receiving the data.

❸ The server converts the code set from IBM-1047 to ISO8859-1 before sending the data.

Note

The line delimiter information is always given to the host that is capable of performing the
conversion, in these cases the z/OS host.

TRANSFER_FILE_CODESET|D|FCODESET= codeset

The data in the data set has the specified code set. codeset is the code set name that is known to
the iconv function of the system performing the conversion. The available code sets can be listed by
invoking the iconv command at a USS prompt with the -l option:

> iconv -l

Default: none

TRANSFER_FILE_LINE_DELIMITER|J|FLDELIM=UNIX|MVS|MVS-FTP|DOS|MAC|NEL

The transfer file line delimiter specifies the newline convention used in the (source or destination)
file. Possible values are:

• UNIX: The line delimiter used in the file is LF (\n, 0x0A).

• MVS: The line delimiter used in the file is NL (\n, 0x15). When writing to a data set, also the CR
(\r, 0x0D) code is considered as the End of Line.

• MVS-FTP: When reading MVS data sets, each record in the data set is treated as a line. The transfer
line delimiter is appended to the record. Any control characters in the record data are preserved.

When reading data sets with printer control characters, the control characters are preserved in the
output.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

90 Chapter 5 Transferring Files

If the code set conversion is specified either by TRANSFER_TRANSLATE_TABLE|E,
or by TRANSFER_CODESET|C and TRANSFER_FILE_CODESET|D, the appended delimiter
is the delimiter specified by TRANSFER_LINE_DELIMITER|I, TRANSFER_CODESET|C, or
TRANSFER_TRANSLATE_TABLE|E. If no code set conversion is requested, the delimiter is defined
by the code set of the data set. By default it is EBCDIC.

You can specify code sets by defining TRANSFER_FILE_CODESET without TRANSFER_CODESET.
For example, to have a DOS delimiter in Unicode (x'000D000A') appended to the records,
set "I=DOS,J=MVS-FTP,D=UCS-2", and to have a Unix delimiter in ISO Latin 1 (x'0A'), set
"I=UNIX,J=MVS-FTP,D=ISO8859-1".

Do not use this when writing data sets.

• DOS: The line delimiter used in the file is CRLF (\r\n, 0x0D 0x0A).

• MAC: The line delimiter used in the file is CR (\r, 0x0D).

• NEL: The line delimiter used in the file is Unicode New Line (0x85).

Default: none

Note

The line delimiter information should be given to the host that is capable of performing the
conversion, such as a host with a Tectia.

Line delimiter conversion is implemented for single byte code sets only.

For the line delimiter conversion to happen, both TRANSFER_LINE_DELIMITER|I and
TRANSFER_FILE_LINE_DELIMITER|J must be specified.

Example: a z/OS Tectia SFTP client sends a data set to a Windows host and copies the file back
from Windows

In this example, the code set is also converted.

sftp> lsite I=dos J=mvs ❶

sftp> lsite C=IBM-437 D=IBM-1047 ❷

sftp> sput //DATASET.TXT file.txt ❸

sftp> sget file.txt //DATASET.COPY.TXT ❹

❶ Transfer line delimiter is set to DOS and transfer file line delimiter to MVS.

❷ Transfer code set is set to IBM-437 and transfer file code set to IBM-1047.

❸ The z/OS client inserts a NL (0x15) character after each record. The line delimiter conversion
converts all NL:s to CRLF (0x0D 0x0A) characters, which remain unchanged in the code set
conversion.

❹ The CRLF line delimiters are converted to LF characters, which are converted to NL characters
in the code set conversion. Each NL character (and CR character, if there are any in the data)
causes the current record to be written out and a new record started.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

91

TRANSFER_FORMAT|F|FORMAT=LINE|STREAM|RECORD

The byte stream consists of the bytes that are transferred as payload in the SFTP protocol packets.
The byte stream has one of the following formats: LINE, STREAM or RECORD. All three formats may
have data consisting of text, non-text data, or a mixture of these.

When writing an MVS data set, a record that is longer than the maximum or fixed record length will
cause an error unless RECORD_TRUNCATE is set to YES, in which case the record will be truncated.
When writing to data sets with fixed record lengths, short records will be filled with binary zeroes if
you use the record transfer format and with blanks if you use the line transfer format.

• LINE: The line transfer format is record-based. It uses delimiter characters to mark the end of a
record. The delimiter character may be a Carriage Return (CR) or a Newline (NL). When writing
to or reading from data sets with ASA control characters, a Form Feed (FF) is also treated as a
delimiter. The table below shows the values of these characters in EBCDIC and ASCII. Data sent
to Tectia Client in the line transfer format must be in EBCDIC or must be converted to EBCDIC
during the transfer.

Delimiter EBCDIC ASCII

 Name Dec Oct Hex Name Dec Oct Hex

\r Carriage Return CR 13 015 0x0D CR 13 015 0x0D

\n Newline NL 21 025 0x15 LF 10 012 0x0A

\f Form Feed FF 12 014 0x0C FF 12 014 0x0C

Note that ASCII does not have a NL character, instead Line Feed (LF) is used to delimit lines.

Avoid conversions that transform an ASCII Line Feed (LF/10/012/0x0A) into an EBCDIC Line
Feed (LF/37/045/0x25) or an EBCDIC Newline (NL/21/025/0x15) into an ASCII Next Line
(NEL/133/0205/0x85).

Be aware that sending a double delimiter, e.g. \r\n or \n\r, to Tectia Client will result in two
records. The TRANSFER_LINE_DELIMITER and TRANSFER_FILE_LINE_DELIMITER attributes can
be used to cause the Tectia Client server or client program to convert between the line delimiter
conventions.

Tectia Client sends \n as the Server Newline Convention in the server initialization SFTP protocol
message.

When transferring line format data to and from MVS files with ASA line printer control characters,
Tectia Client will convert between the control characters and line delimiter characters, as described
in the IBM z/OS XL C/C++ Programming Guide, Chapter "Using ASA Text Files".

To transfer records without changing the ASA code, use the STREAM or RECORD transfer format, or
define the data set using a DD card and specify RECFM=FB or RECFM=VB.

Data sets transferred in the line transfer format and recreated on a mainframe will not necessarily
be identical.

• STREAM: The stream transfer format contains the data bytes of the data set but no structural
information. If a data set with a fixed record length is transferred with the stream format and

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

92 Chapter 5 Transferring Files

recreated with the same record length, the record structure will be preserved. Variable length
records will not be recreated properly if transferred with the stream format.

• RECORD: The record transfer format is record-based. Each record is preceded by a length field
consisting of a 4- byte big-endian binary integer, which indicates the number of data bytes in the
record. Note that the format is not the same as the record descriptor word in data sets with RECFM=V
or RECFM=VB.

A data set that is transferred with the record transfer format can be recreated as any data set type.

Default: LINE.

TRANSFER_LINE_DELIMITER|I|LDELIM=UNIX|MVS|MVS-FTP|DOS|MAC|NEL

The transfer line delimiter specifies the newline convention used in the data that is transferred over
the connection. Possible values are:

• UNIX: The line delimiter on the connection is LF (\n, 0x0A).

• MVS: The line delimiter on the connection is NL (\n, 0x15). If the data is converted from EBCDIC
to ASCII, the NL becomes a LF (\n, 0x0A).

• MVS-FTP: When writing to a data set, only the LF (\n, 0x0A) control codes are considered as an
End Of Line. Any CR (\r, 0x0D) codes are preserved as data in the record.

When writing data sets with ASA printer control characters, the first character on each line is used
as the ASA character.

Do not use this when reading data sets.

• DOS: The line delimiter on the connection is CRLF (\r\n, 0x0D 0x0A).

• MAC: The line delimiter on the connection is CR (\r, 0x0D).

• NEL: The line delimiter used in the file is Unicode New Line (0x85).

Default: none

Note

The line delimiter information should be given to the host that is capable of performing the
conversion, such as a host with a Tectia.

TRANSFER_MODE|X|MODE=BIN|TEXT

The transfer mode specifies whether code set and line delimiter conversions are performed. The
available values are:

• BIN: Code set and line delimiter conversions are not performed.

• TEXT: Code set and line delimiter conversions are performed.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

93

Default: none

Note

If TRANSFER_MODE is not given but both TRANSFER_CODESET and TRANSFER_FILE_CODESET
or TRANSFER_TRANSLATE_TABLE are present conversions are performed.

TRANSFER_TRANSLATE_DSN_TEMPLATES|A|XDSNT= templates

templates specifies the search templates for the translate table. Write '%T' to show the point where
the translate table name (see above) is to be inserted. Delimit the templates with a plus character.
The data set name templates must not contain slashes, instead they must be preceded by two or three
underscores.

The first translate table data set that is found is used to perform the code conversion.

Note

The translate table must translate line delimiters into EBCDIC NL characters. See
TRANSFER_FORMAT.

Default: none

TRANSFER_TRANSLATE_TABLE|E|XTBL= table

TABLE is the name of the table that specifies the code set conversion. If set, this attribute overrides
the transfer code set and file code set attributes. The table is always applied in the normal direction,
that is, the first character array is used for incoming (from the line to the data set) data and the second
array for outgoing data. If the opposite translation is needed, e.g. the data set contains ASCII and
should be transferred as EBCDIC, you (or your system programmer) can prepare a table data set
with the character arrays in reversed order (e.g. with the system utility CONVXLAT or by editing
an existing translate data set).

TYPE|T=PS|PO|PDS|POE|PDSE|GDG|HFS|VSAM|ESDS|KSDS|RRN

Specifies the type of a data set when the data set is created. The available values are:

• PS: The type of the created data set is PS.

• PO|PDS: The type of the created data set should be PDS. Note that in order to create a PDS, you need
to specify the DIRECTORY_SIZE parameter. If you do not specify the directory size, a sequential
data set - not a partitioned data set - is created.

• POE|PDSE: The type of the created data set is PDSE.

• GDG: The type of the created data set is GDG.

• HFS: The type of the created data set is HFS.

• VSAM: The type of the created data set is VSAM.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

94 Chapter 5 Transferring Files

• ESDS: The type of the created data set is VSAM ESDS.

• KSDS: The type of the created data set is VSAM KSDS.

• RRN: The type of the created data set is VSAM RRN.

Default: PO, if data set name includes member, otherwise PS

UNIT|UN= unit

The name of the device or group of devices that the data set will reside on (or does reside on, if
it already exists). The maximum length of unit is 8 characters. If the value exceeds the maximum
length, it is truncated to 8 characters.

It is also possible to specify a device address. Precede a four digit address with an underscore.

Default: none

UNIT_COUNT|UC|UNC= number

Specifies the number of devices for the data set. This attribute corresponds to the second value in
the UNIT parameter of the JCL DD statement.

Default: System default

UNIT_PARALLEL|UNP=YES|NO

Asks the system to mount all the volumes for the data set in parallel. This attribute corresponds to
the character 'P' in the second value in the UNIT parameter of the JCL DD statement.

Default: System default

VOLUME_COUNT|VC|VOLCNT= number

Specifies the maximum number of volumes that an output data set requires. This attribute
corresponds to the volume count value in the VOLUME parameter of the JCL DD statement.

Default: System default

VOLUMES|VO|VOL= vol1+vol2+...

A plus sign (+) separated list of volumes a data set will reside on (or does reside on, if it already exists).

Default: none

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

95

Chapter 6 Secure Shell Tunneling

Tunneling is a way to forward otherwise unsecured application traffic through Secure Shell. Tunneling
can provide secure application connectivity, for example, to POP3, SMTP, and HTTP-based applications
that would otherwise be unsecured.

The Secure Shell v2 connection protocol provides channels that can be used for a wide range of purposes.
All of these channels are multiplexed into a single encrypted tunnel and can be used for tunneling
(forwarding) arbitrary TCP/IP ports and X11 connections.

The client-server applications using the tunnel will carry out their own authentication procedures, if any,
the same way they would without the encrypted tunnel.

The protocol/application might only be able to connect to a fixed port number (e.g. IMAP 143). Otherwise
any available port can be chosen for tunneling. For remote tunnels, the ports under 1024 (the well-known
service ports) are not allowed for ordinary users, but are available only for system administrators (root
privileges).

There are two basic kinds of tunnels: local and remote. They are also called outgoing and incoming
tunnels, respectively. X11 forwarding and agent forwarding are special cases of a remote tunnel. The
different tunneling options are handled in the following sections.

6.1 Local Tunnels

A local (outgoing) tunnel forwards traffic coming to a local port to a specified remote port.

With sshg3 on the command line, the syntax of the local tunneling command is as follows:

client$ sshg3 -L [protocol/][listen-address:]listen-port:dst-host:dst-port sshserver

where:

• [protocol/] specifies which protocol is to be used in the tunneled connection, it can be ftp or tcp
(optional argument). The default is tcp.

• [listen-address:] defines which interface on the local client will be listened to (optional argument).
If it is omitted, only local interface is listened unless the -g --gateway option is used before -L to bind
to all interfaces on the client-side.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

96 Chapter 6 Secure Shell Tunneling

• listen-port is the number of the port on the local client, and connections coming to this port will
be tunneled to the server.

• dst-host:dst-port define the destination host address and the port to which the connection is
tunneled from the server.

• sshserver is the IP address or the host name of the Secure Shell server.

The host name or IP address of the destination host and sshserver can be defined as regular expressions
that follow the egrep syntax, but no wildcards are supported.

Note

If dst-host is specified as a domain name rather than IP address, the name will be resolved
according to the address family settings of sshserver. For example, if the domain name is
resolved to an AAAA DNS record (IPv6) and the address family setting of the server is inet
(IPV4), the tunnel will not work.

Setting up local tunneling allocates a listener port on the local client host. Whenever a connection is made
to this listener, the connection is tunneled over Secure Shell to the remote server and another connection
is made from the server to a specified destination host and port. The connection from the server onwards
will not be secure, it is a normal TCP connection.

Note

Every user with access to the local client host will be able to use the local tunnels.

Figure 6.1 shows the different hosts and ports involved in local tunneling (port forwarding).

listen-address
client

Secure Shell
Client

server

Secure Shell
Server

src

Application
Client

dst

Application
Server

listen-port

dst-port
src-host dst-host

Local tunnel

Figure 6.1. Local tunneling terminology

For example, when you issue the following sshg3 command on the command line, all traffic coming to
port 1234 on the client host will be forwarded to port 23 on the server.

client$ sshg3 -L 1234:localhost:23 --abort-on-failing-tunnel username@sshserver

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Transparent TCP Tunneling on Windows 97

The forwarding address in the command is resolved at the (remote) end point of the tunnel. In this case
localhost refers to the server host (sshserver).

In this example, also the --abort-on-failing-tunnel option is specified. It causes the command to
abort if creating the tunnel listener fails (for example, if the port is already reserved). Normally if the
connection to the server succeeds, but creating the listener fails, no error message is given.

6.1.1 Transparent TCP Tunneling on Windows

You can configure Tectia Client on Windows to automatically tunnel outbound TCP connections via secure
SSH tunnels.

Note

Using this feature requires that you've installed Tectia Client's Transparent TCP Tunneling
module. If needed, you can install this by running the Tectia Client installation wizard.

A Tectia Broker filters outbound TCP connections and creates secure SSH tunnels between the Broker
and the SSH Server. You can configure Tectia Broker to tunnel, block, or permit connections. You can
configure filtering per application name, remote IPv4/IPv6 address, hostname, and port.

There are two brokers for filtering connections:

• Trusted broker: Any filter rules configured in the trusted broker have priority over user-broker rules.
By default does not do any filtering of its own, only helps user brokers with hostname filtering. Runs
as SYSTEM by default.

• User broker: Broker with user-specific filtering rules for outbound TCP and DNS.

If you only want to filter using one type of broker, you may disable either broker type.

Transparent tunneling on Windows also relies on the capture driver. The capture driver captures the
outbound TCP connections and DNS queries and asks first the trusted Broker (if configured) and then the
user specific Broker (if configured) what to do with these TCP connections and DNS queries.

Configuring Transparent Tunneling

Rules for transparent tunneling are configured in the brokers' filter-engine element. For more
information about the element's syntax, see filter-engine.

To configure the trusted broker, run the following with Administrator privileges. Or if you have a non-
default trusted user, as the trusted user:

ssh-tectia-configuration.exe -a capture-trusted-broker

The host keys of transparent-tunnel targets must be in the known hosts file. Otherwise the tunneling will
fail. You can add a host key to a user broker with:

$ ssh-broker-ctl probe-key --save-hostkey ip#port

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

98 Chapter 6 Secure Shell Tunneling

To save a host key to the trusted broker, run the following with Administrator privileges. Or if you have
a non-default trusted user, as the trusted user:

ssh-broker-ctl -a capture-trusted-broker probe-key --save-hostkey ip#port

If you want to use the trusted broker as a regular user, set your broker with:

$ set SSH_SECSH_BROKER=capture-trusted-broker

Any subsequent client commands (sshg3, scpg3, sftpg3) shall use the trusted broker for filtering
connections.

In the global broker configuration file, the windows-capture section allows you to configure trusted-
broker settings, such as trusted user, filtering, automatic start on boot etc. After changes to the windows-
capture section, you will need to run the following:

ssh-broker-ctl capture-driver reconfig

The capture driver is managed via ssh-broker-ctl capture-driver. For more information about available
commands and options, such as capture-driver setup and debug logging, see the section called
“Commands”

Transparent Tunneling Logs

You can obtain information about transparent-tunneling components for logging and troubleshooting
purposes.

For information about the Tectia Broker in transparent tunneling, run:

$ ssh-broker-ctl status

To view the status of the trusted broker, run the following as Administrator when using a default trusted
user, or as the trusted user when using a custom trusted user:

ssh-broker-ctl -a capture-trusted-broker status

You can review capture driver logs from Windows Event Logs:

• For major events, see Applications and Services Logs→SSHCaptureDriver→Operational

• For debug logs, go to Applications and Services Logs→SSHCaptureDriver, right
click SSHCaptureDriver and select View→Show Analytic and Debug Logs, then open
SSHCaptureDriver→Debug.

Note

Debug logs are disabled by default. They can be enabled with ssh-broker-ctl capture-
driver debug <lvl>. To enable debug logs for the trusted broker, run the command as an
Administrator/custom trusted user with the added option -a capture-trusted-broker.

We do not recommend leaving debug logging enabled for prolonged time, at least not with
levels 4 and greater. Doing so may result in lots of logs and consume memory.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Non-Transparent TCP Tunneling 99

6.1.2 Non-Transparent TCP Tunneling

When non-transparent TCP tunneling is used, the application to be tunneled is set to connect to the local
listener port instead of connecting to the server directly. Tectia Client forwards the connection securely
to the remote server.

Internet

Tectia Client
Tectia Server

Local tunnel

Figure 6.2. Simple local tunnel

If you have three hosts, for example, sshclient, sshserver, and imapserver, and you forward the
traffic coming to the sshclient's port 143 to the imapserver's port 143, only the connection between the
sshclient and sshserver will be secured. The command you use would be similar to the following one:

sshclient$ sshg3 -L 143:imapserver:143 username@sshserver

Figure 6.3 shows an example where the Secure Shell server resides in the DMZ network. Connection
is encrypted from the Secure Shell client to the Secure Shell server and continues unencrypted in the
corporate network to the IMAP server.

E-mail Client
IMAP Server

Tectia Client

Tectia Server

Internet

Local tunnel Corporate
network

Figure 6.3. Local tunnel to an IMAP server

Tunnels can also be defined for connection profiles in the Connection Broker configuration file. The
defined tunnels are opened automatically when a connection with the profile is made. The following is
an example from a ssh-broker-config.xml file:

<profile id="id1" host="sshserver.example.com">

...

 <tunnels>

 <local-tunnel type="tcp"

 listen-port="143"

 dst-host="imap.example.com"

 dst-port="143"

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

100 Chapter 6 Secure Shell Tunneling

 allow-relay="no" />

 ...

 </tunnels>

</profile>

By default, local tunnels originating only from the client host itself are allowed. To allow also other
machines to connect to the tunnel listener port, set the allow-relay to yes.

The tunneling settings can be made in the Tectia Connections Configuration GUI, under Connection
Profiles → Tunneling per each profile. See the section called “Defining Tunneling”.

Automatic Tunnels

Automatic tunnels are one way of creating non-transparent local tunnels for application connections.

Automatic tunnels always use a connection profile in the tunnel establishing. You can create listeners for
local tunnels that will be activated automatically when the Connection Broker starts up. The actual tunnel
will be formed the first time a connection is made to the listener port. If the connection to the server is
not open at that time, it will be opened automatically as well.

In the Connection Broker configuration file, make the following kind of settings:

<static-tunnels>

 <tunnel type="tcp"

 listen-port="9874"

 dst-host="st.example.com"

 dst-port="9111"

 allow-relay = "no"

 profile="id1" />

</static-tunnels>

You can configure the automatic tunnels in the Tectia Connections Configuration GUI, on the Automatic
Tunnels page. For instructions, see Section A.1.6.

Examples of Local Tunneling

When sshg3 is used to create secure tunnels using local port forwarding, the TCP applications to be
tunneled are configured to connect to a localhost port instead of the application server port.

Example application, clientapp1, by default connects to a Unix server unix.example.com using TCP
port 2345.

$ clientapp1 --username user1 --server unix.example.com --port 2345

For securing this TCP application using Secure Shell, use the following commands:

$ sshg3 -L 2345:localhost:2345 user1@unix.example.com -S -f &

$ clientapp1 --username user1 --server localhost --port 2345

The above sshg3 command connects to remote Secure Shell server unix.example.com, creates a local
listener on port 2345, instructs the remote Secure Shell server to forward the incoming traffic to
localhost:2345, and goes to background in single-shot-mode.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Non-Transparent FTP Tunneling 101

6.1.3 Non-Transparent FTP Tunneling

Non-transparent FTP tunneling is an extension to the generic tunneling mechanism. Unlike generic
tunneling (port forwarding) mechanism, non-transparent FTP tunneling secures the transferred files, in
addition to the FTP control channel. The FTP tunneling code monitors the tunneled FTP control channels
and dynamically creates new tunnels for the data channels as they are requested.

When non-transparent FTP tunneling is used, tunnels are created from local client ports to remote servers.
The FTP client is configured to connect to Tectia Client which will forward the connection to the endpoint
where a Secure Shell server is running.

The typical use case is that Tectia Client is located on the same host as the FTP client; and the FTP server
is on the same host as the Secure Shell server. However, other configurations are also supported, but it is
worth noticing that the connection is encrypted only between Tectia Client and the Secure Shell server.

Non-transparent FTP tunneling can be requested on the command line, or enabled and defined in
the Connection Broker configuration. The configured non-transparent FTP tunneling uses connection
profiles, that are defined on Tectia Client.

On command-line, FTP tunneling can be used for both local and remote tunnels. Non-transparent FTP-
tunneling is started by entering a sshg3 command with the following syntax:

sshclient$ sshg3 -L ftp/1234:localhost:21 username@sshserver

For information on the sshg3 command, see the sshg3(1) man page.

The FTP tunneling settings can be made in the Tectia Connections Configuration GUI, under Connection
Profiles → Tunneling for each profile. See the section called “Defining Tunneling”.

FTP tunnels can also be defined for connection profiles in the Connection Broker configuration file. The
following is an example from the Connection Broker configuration file ssh-broker-config.xml:

<profiles>

 <profile id="id1" host="sshserver.example.com"

 ...

 <tunnels>

 <local-tunnel type="FTP"

 listen-port="1234"

 dst-host="127.0.0.1"

 dst-port="21"

 allow-relay="NO" />

 ...

 </tunnels>

 </profile>

</profiles>

An FTP connection can then be made with the following (example) commands:

sshclient$ ftp

ftp$ open localhost 1234

The FTP connection to port 1234 on client is now tunneled to port 21 on the Secure Shell server.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

102 Chapter 6 Secure Shell Tunneling

As an alternative to FTP tunneling, you can use the sftpg3 or scpg3 clients for secure file transfers. These
clients can be used on command line or in scripts and they require less configuration than FTP tunneling,
since Tectia Server already has sft-server-g3 as a subsystem, and sftpg3 and scpg3 clients are included
with Tectia Client. Managing remote user restrictions on the server machine will be easier, since you do
not have to do it also for FTP.

To understand exactly how FTP tunneling is done, two different cases need to be examined: the active
mode and the passive mode of the FTP protocol.

Tunneling FTP in Passive Mode

In passive mode, the FTP client sends the command PASV to the server, which reacts by opening a listener
port for the data channel and sending the IP address and port number of the listener as a reply to the
client. The reply is of the form

227 Entering Passive Mode (a1,a2,a3,a4,p1,p2)

where a1.a2.a3.a4 is the IP address and p1*256+p2 is the port number. For example, the reply for IP
address 10.1.60.99 and port 1548 is: 227 Entering Passive Mode (10,1,60,99,6,12).

When the Connection Broker notices the reply to the PASV command, it will create a local port forwarding
to the destination mentioned in the reply. After this the Connection Broker will rewrite the IP address and
port in the reply to point to the listener of the newly created local port forwarding (which exists always in a
localhost address, 127.0.0.1) and pass the reply to the FTP client. The FTP client will open a data channel
based on the reply, effectively tunneling the data through the Secure Shell connection, to the listener the
FTP server has opened. The net effect is that the data channel is secured all the way except from the
Secure Shell server to the FTP server if they are on different machines. This sequence of events takes
place automatically for every data channel.

Since the tunnel is opened to a localhost address, the FTP client must run on the same machine as Tectia
Client if passive mode is used.

Tunneling FTP in Active Mode

In active mode, the FTP client creates a listener on a local port, for a data channel from the FTP server
to the FTP client, and requests the channel by sending the IP address and the port number to the FTP
server in a command of the following form:

PORT a1,a2,a3,a4,p1,p2

where a1.a2.a3.a4 is the IP address and p1*256+p2 is the port number. The Connection Broker
intercepts this command and creates a remote port forwarding from the localhost address of the Secure
Shell server to the address and port specified in the PORT command.

After creating the tunnel, the Connection Broker rewrites the address and port in the PORT command to
point to the newly opened remote forwarding on the Secure Shell server and sends it to the FTP server.
Now the FTP server will open a data channel to the address and port in the PORT command, effectively
forwarding the data through the Secure Shell connection. The Connection Broker passes the incoming
data to the original listener created by the FTP client. The net effect is that the data channel is secure the

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

SOCKS Tunneling 103

whole way except from Tectia Client to the FTP client. This sequence of events takes place automatically
for every data channel.

For FTP tunneling in active mode to work, the FTP server must be run on the same host as the Secure
Shell server, and the FTP client and Tectia Client must reside on the same host.

Note

Tunneling FTP in active mode is not guaranteed to work in all setups. If possible, use the passive
mode when tunneling FTP connections.

6.1.4 SOCKS Tunneling

SOCKS tunneling is a mechanism available for tunneling applications that support the SOCKS4 or
SOCKS5 client protocol.

Instead of configuring tunneling (a.k.a port forwarding) from specific ports on the local host to specific
ports on the remote server, you can specify a SOCKS server which can be used by the user's applications.
Each application is configured in the regular way except that it is configured to use a SOCKS server on a
localhost port. The Secure Shell client application, Tectia Client, opens a port in the localhost and mimics
a SOCKS4 and SOCKS5 server for any SOCKS client applications.

When the applications connect to services such as IMAP4, POP3, SMTP, and HTTP, they provide the
necessary information to the SOCKS server, which is actually Tectia Client mimicking a SOCKS server.
Tectia Client will use this information in creating a tunnel to the Secure Shell server and relaying the
traffic back and forth securely.

With sshg3 on the command line, the syntax of the SOCKS tunneling command is as follows:

client$ sshg3 -L socks/[listen-address:]listen-port username@sshserver

where:

• [listen-address:] defines which interface on the client will be listened to (optional argument)

• listen-port is the number of the port on the client

• sshserver is the IP address or the host name of the Secure Shell server.

For example, the following command will set up a local tunnel from port 1234 on the client to sshserver.
The applications are set to use a SOCKS server at port 1234 on the client. From the server, the connections
are forwarded unsecured to the destination hosts requested by the applications.

sshclient$ sshg3 -L socks/1234 username@sshserver

SOCKS tunnels can also be defined for connection profiles in the Connection Broker configuration file.
The following is an example from a ssh-broker-config.xml file:

<profile id="id1" host="sshserver.example.com">

...

 <tunnels>

 <local-tunnel type="socks"

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

104 Chapter 6 Secure Shell Tunneling

 listen-port="1234"

 allow-relay="no" />

 ...

 </tunnels>

</profile>

6.2 Remote Tunnels

A remote (incoming) tunnel forwards traffic coming to a remote port to a specified local port.

With sshg3 on the command line, the syntax of the remote tunneling command is as follows:

client$ sshg3 -R [protocol/][listen-address:]listen-port:dst-host:dst-port \

username@sshserver

where:

• [protocol/] specifies which protocol is to be used in the tunneled connection, it can be ftp or tcp
(optional argument). The default is tcp.

• [listen-address:] defines which interface on the remote server will be listened to (optional
argument). If it is omitted, only local interface is listened unless the -g --gateway option is used before
-R to bind to all interfaces on the server-side.

• listen-port is the number of the port on the remote server, and connections coming to this port will
be tunneled to the client.

• dst-host:dst-port define the destination host address and the port to which the connection is
tunneled from the client.

• sshserver is the IP address or the host name of the Secure Shell server.

The IP addresses and host names of the destination host and the sshserver can be defined using regular
expressions that follow the egrep syntax. No wildcards are supported.

Note

If dst-host is specified as a domain name rather than IP address, the name will be resolved
according to the address family settings of client. For example, if the domain name is resolved
to an AAAA DNS record (IPv6) and the address family setting of the client is inet (IPV4),
the tunnel will not work.

Setting up remote tunneling allocates a listener port on the remote server. Whenever a connection is made
to this listener, the connection is tunneled over Secure Shell to the local client and another connection is
made from the client to a specified destination host and port. The connection from the client onwards will
not be secure, it is a normal TCP connection.

Note

Every user with access to the remote server host will be able to use remote tunnel.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

105

Figure 6.4 shows the different hosts and ports involved in remote port forwarding.

listen-address
client

Secure Shell
Client

server

Secure Shell
Server

dst

Application
Server

src

Application
Client

listen-port

dst-port
src-hostdst-host

Remote tunnel

Figure 6.4. Remote tunneling terminology

For example, if you issue the following command, all traffic which comes to port 1234 on the server will
be tunneled to port 23 on the client. See Figure 6.5.

sshclient$ sshg3 -R 1234:localhost:23 username@sshserver

The forwarding address in the command is resolved at the (local) end point of the tunnel. In this case
localhost refers to the client host.

Internet

Tectia ServerTectia Client

Remote tunnel

Figure 6.5. Remote tunnel

Tunnels can also be defined for connection profiles in the Connection Broker configuration file. The
defined tunnels are opened automatically when a connection with the profile is made.

The following is an example from a ssh-broker-config.xml file:

<profile id="id1" host="sshserver.example.com">

 ...

 <tunnels>

 <remote-tunnel type="tcp"

 listen-port="1234"

 dst-host="localhost"

 dst-port="23" />

 ...

 </tunnels>

</profile>

The tunneling settings can be made in the Tectia Connections Configuration GUI, under Connection
Profiles → Tunneling per each profile. See the section called “Defining Tunneling”.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

106 Chapter 6 Secure Shell Tunneling

6.3 X11 Forwarding

X11 forwarding is a special case of remote tunneling.

Tectia Client supports X11 forwarding on both Unix and Windows platforms. On Windows, you need also
the XWindow Manager package. Tectia Server supports X11 forwarding only on Unix platforms.

Internet

Tectia Server (Unix)
with X Client applications

Tectia Client with
3rd-party X Server

X11 tunnel

Figure 6.6. X11 forwarding

X11 forwarding can be enabled in the client by setting the following line in the ssh-broker-config.xml
file (either under default-settings or under a connection profile):

<forwards>

 <forward type="X11" state="on"/>

</forwards>

By default, X11 forwarding is off.

X11 forwarding can be enabled in the Tectia Connections Configuration GUI, under Default Connection
→ Tunneling for the default connection, and under Connection Profiles → Tunneling per each profile.
See the section called “Defining Default Tunneling Settings” and the section called “Defining Tunneling”.

To test that X11 forwarding works on Windows, use the XWindow Manager. Log into the remote system
and type xclock &. This starts an X clock program that can be used for testing the forwarding connection.

If the X clock window is displayed properly, you have the X11 forwarding working. If the X clock fails and
complains that it cannot open the display, check that the XAuth is properly installed on the remote host.

Note

Do not set the DISPLAY variable on the client. You will most likely disable encryption. (X
connections tunneled through Secure Shell use a special local display setting.)

6.4 Agent Forwarding

Agent forwarding is a special case of remote tunneling. In agent forwarding, Secure Shell connections
and public-key authentication data are forwarded from one server to another without the user having
to authenticate separately for each server. Authentication data does not have to be stored on any other
machine than the local machine, and authentication passphrases or private keys never go over the network.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

107

Tectia Client provides authentication agent functionality and the Connection Broker can also serve
OpenSSH clients as an authentication agent. Tectia Server supports agent forwarding on Unix platforms.
Thus, the start and end points of the agent forwarding chain can be Windows or Unix hosts, but all hosts
in the middle of the forwarding chain must be Unix hosts and must have both the Secure Shell client and
server components installed.

Internet

Tectia Server (Unix)
Tectia Client (Unix)

Tectia Client

Internet

Tectia Server

Agent tunnel Agent tunnel

Figure 6.7. Agent forwarding

In the factory settings, agent forwarding is enabled (on).

Agent forwarding can be enabled or disabled on the client side both in the default configuration settings
and separately for each connection profile.

In the ssh-broker-config.xml file, agent forwarding can be disabled by setting the following line either
under default-settings or under a connection profile:

<forwards>

 <forward type="agent" state="off" />

</forwards>

Agent forwarding can be disabled in the Tectia Connections Configuration GUI, under Default
Connection → Tunneling for the default connection, and under Connection Profiles → Tunneling per
each profile. See the section called “Defining Default Tunneling Settings” and the section called “Defining
Tunneling”.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

108 Chapter 6 Secure Shell Tunneling

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

109

Chapter 7 Troubleshooting Tectia Client

If you encounter any connection, authentication, or configuration problems, you can try to solve them by
running Tectia Client in debug mode. For more information on debugging, see instructions in Section 7.3.

You can also gather information needed for troubleshooting and send it to SSH technical support. See
Section 1.2 for information on accessing the Tectia online support resources and contacting SSH technical
support.

The information you need to provide to SSH technical support includes:

• The verbose level output of Tectia Client; see Section 7.1.

• System information from Tectia Troubleshooting Tool's output. This information will help in analyzing
the reported problems, as the technical support gets to know the exact details about the environment
where the Tectia products are running; see Section 7.2.

• Possibly debug information; see Section 7.3.

7.1 Gathering Basic Troubleshooting Information

Most connection problems can be solved by running sshg3 in verbose mode and examining the output.

Enter the command -v (or --verbose) to get the diagnostic output:

$ sshg3 -v user@server.example.com

You can also get the diagnostic output from the old connection attempts afterwards. The following
command lists the old connection attempts and their connection IDs:

$ ssh-broker-ctl list-connections --disconnected

The following command shows the diagnostic output from the old connection attempts:

$ ssh-broker-ctl connection-status <connection-id>

7.2 Collecting System Information for Troubleshooting

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

110 Chapter 7 Troubleshooting Tectia Client

Tectia Client includes a troubleshooting tool that automatically collects necessary data about the operating
system and hardware, and about the installed Tectia product versions and their configurations into a file.
The troubleshooting tool gathers the following information about the system configuration:

• The operating system (OS) version and patches installed

• OS configuration files and other OS information, for example, about PAM, syslog, resolver, and ifconfig

• Hardware information, for example, the machine model, security class, and CPU version

• OS status, for example, the reserved ports and connections per socket

• Tectia binaries, the tool checks the actual installation package versions and detects also debug packages

• Tectia global configuration from the /etc/ and /opt/ directories on Unix, and from the default
installation directory on Windows:

• "C:\Program Files (x86)\SSH Communications Security\SSH Tectia" on 64-bit Windows
versions

• User-specific Tectia configuration from user's home directory: $HOME/.ssh2 on Unix, and "C:
\Documents and Settings\<username>" or "C:\Users\" on Windows

• The user account running the troubleshooting tool

• On Unix, it is configurable if everything stored in the specified user's configuration directories,
including the private keys, are to be collected. This helps the Technical Support to better simulate the
user's situation.

To collect system information, open a command prompt and enter the following command:

On Unix, run the troubleshooting tool with command:

ssh-troubleshoot [options] info [command-options]

On Windows, run the troubleshooting tool with command:

ssh-troubleshoot.cmd [options] info

For details about the command options, refer to ssh-troubleshoot(8).

The collected data is stored in the results file named as follows:

• On Unix: ssh-troubleshoot-data-<hostname>-<timestamp>.tar

• On Windows: ssh-troubleshoot-data-<hostname>-<timestamp>.log

In the file name, hostname identifies the host from where the information was collected, and timestamp
specifies the date and time when the information was stored into the file. The timestamp format is
yyyymmdd-hhmmUTC. So the reports are not in local time, but use the UTC.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Setting Connection Broker to Debug Mode 111

You can send the file to SSH Technical Support for analysis.

Caution

Handle the output file with appropriate care as it may contain security-critical data.

7.3 Setting Connection Broker to Debug Mode

The Connection Broker is a component included in Tectia Client. The Connection Broker handles all
cryptographic operations and authentication-related tasks for Tectia Client and the command-line tools
sshg3, scpg3, and sftpg3.

If the verbose level output explained in Section 7.1 does not solve your problem, set the existing running
Broker to debug mode. Existing open connections will remain up and running, which is relevant on
multiuser systems or when there are lots of automated scripts running at the same time. You will also get
a debug log from new connection attempts.

To set the Connection Broker to debug mode, follow these instructions:

1. Open a shell (on Unix) or command prompt window (on Windows).

2. If you already have an existing Connection Broker, skip this step. If you do not have an existing
Connection Broker, run the following command:

$ ssh-broker-g3

3. Set the Connection Broker to debug mode by running the following command:

$ ssh-broker-ctl debug --log-file=<logfile> <debug-level>

In the command:

• logfile specifies the file to which the debug output will be directed

• debug-level is an integer from 0 (no debug info) to 99 that specifies the desired amount of debug
information.

Note

The recommended debug levels are 1-9. The higher the number, the more detailed the
troubleshooting output will be, and the more the debugging will affect performance.

You can set the debug mode also in the Debug Log tab in the PrivX Desktop. To open the Debug
Log tab, click the top-right menu and select View Debug Log.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

112 Chapter 7 Troubleshooting Tectia Client

Figure 7.1. Setting the Connection Broker's debug mode with GUI

The following example command sets the Connection Broker debug mode to level 4 and outputs the
debug information to a log file named broker.log:

$ ssh-broker-ctl debug --log-file=broker.log 4

4. Connect to a server using one of the clients:

$ sshg3 user@host

5. View the debug information for the connection in the broker.log file.

You can display the debug output also by using the command line tools with argument -D. For example,
the following command will display the debug output with a debug level 4 and set the same debug for
Connection Broker as well:

$ sftpg3 -D '4;broker' user@host

On Windows, besides the command line tools, you can display the debug output also in the Tectia
Connection Status window.

Note

After you have collected the debug output, remember to disable Tectia Client's debug mode,
since debugging slows down the performance.

On Unix and Windows, the debug mode is disabled with the following command:

$ ssh-broker-ctl debug --clear

On Windows, the debug mode can be also disabled by setting the debug level back to 0 in the Debug
Log tab, as shown in Figure 7.2

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Answers to Common Problems 113

Figure 7.2. Disabling the Connection Broker's debug mode in GUI

7.4 Answers to Common Problems

This sections introduces workaround instructions for some problem situations.

Troubleshooting GSSAPI Authentication

When connecting from a Windows 5.x or 6.x client to a Windows 4.x server using GSSAPI
authentication, if authentication fails although GSSAPI has been correctly configured, you may have
to disable the LMHOSTS lookup on the client-side computer. Follow these instructions:

1. Select Control Panel → Network Connections.

2. In Local Area Connection, right-click and select Properties.

3. In the Local Area Connection Properties dialog box, General tab, select Internet Protocol
(TCP/IP) and click the Properties button.

4. In the Internet Protocol (TCP/IP) Properties dialog box, in the General tab, click the Advanced
button.

5. In the Advanced TCP/IP Settings dialog box, in the WINS tab, clear the Enable LMHOSTS
lookup check box.

6. Restart the client-side computer.

Publickey authentication fails

If there are multiple public-keys available either via external key providers or in the user-specific
configuration directory, the server-side might refuse the connection if too many keys are attempted
during publickey authentication. Typically the error shown when attempting to connect to an
OpenSSH server that allows six attempts is "Connection open failed Protocol error (remote): too
many authentication failures public_keys_tried: 7". If the server configuration cannot be changed to

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

114 Chapter 7 Troubleshooting Tectia Client

allow more attempts, the workaround on the client-side is to set the Connection profile to prompt the
user for the specific key to use or with the sshg3, sftpg3 or scpg3 command-line clients use the -K
option to specify the explicit key.

sshg3 -K <path_to_key> <profilename>

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

115

Appendix A Connection Broker
Configuration Tools
The Connection Broker is a component included in Tectia Client, and it handles all cryptographic
operations and authentication-related tasks for Tectia Client. For this reason, all authentication and
connection profile settings are made in the Connection Broker configuration.

The Connection Broker configuration can be edited and viewed via the Tectia Connections Configuration
GUI. For instructions, see Section A.1.

The Connection Broker stores the settings in an XML-based configuration file ssh-broker-config.xml.
It is possible to edit the configuration file directly with an ASCII-text editor or an XML editor. For
a detailed description of the configuration file, see ssh-broker-config(5). For a quick reference to the
configuration file's elements and their attributes, see Section A.4.

A.1 Tectia Connections Configuration GUI

You can use the Tectia Connections Configuration GUI to edit the authentication and connection profile
settings on the Connection Broker included in Tectia Client.

Tectia Connections Configuration GUI is available on Windows, Linux and macOS for Tectia Client.
There are some differences in the GUI options between different OS platforms and product versions. The
following screen shots typically show Tectia Client on Windows. When the differences are important, the
differences are noted.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

116 Appendix A Connection Broker Configuration Tools

Figure A.1. Connection profile tabs

On Linux and macOS, the Tectia Connections Configuration GUI interface differs from the Windows
version most notably with the following exceptions:

• The Microsoft Crypto API option on the Key Providers page is not available.

Note

Only KDE and Gnome window managers are supported. For other compatible managers, check
the website for the Qt framework.

A.1.1 Opening the GUI

When PrivX Desktop GUI is running

The Tectia Connections Configuration GUI can be accessed in several ways:

• When you have the PrivX Desktop GUI active, click the menu icon and select Configuration or right-
click on a specific profile tile and select Edit profile... on Profiles page.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

117

•

On Windows, right-click on the PrivX Desktop tray icon in the Windows taskbar notification
area to access the shortcut menu, and select Configuration.

•

On Linux and macOS, click on the PrivX Desktop tray icon in menu bar to access the tray
icon menu, and select Configuration.

On command-line

The Tectia Connections Configuration GUI can be started by running on command-line:

ssh-tectia-configuration

The following options are available:

-f, --config=FILE

Use configuration file FILE.

-a, --broker-address=ADDR

Connect to separate Connection Broker process using given address.

-d, --debug=STR

Sets debug string to STR.

--convert

Convert old configuration file.

--new-profile

Add a new profile.

--profile-host=HOST

Profile host name when adding a new profile.

--profile-port=PORT

Profile port when adding a new profile.

--profile-user=USER

Profile user when adding a new profile.

--edit-profile=NAME

Edit existing profile NAME.

--ui-mode=MODE

User interface mode. Possible values are standard and file-transfer.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

118 Appendix A Connection Broker Configuration Tools

-V, --version

Print version.

-h, --help

Print usage.

A.1.2 Defining General Settings

On the General page, you can select the cryptographic library to be used and define the Tectia tray icon
settings.

Figure A.2. General settings

Configuration File

Shows the location of the user-specific Broker configuration file. The default location is "%APPDATA
%\SSH\ssh-broker-config.xml" on Windows and "$HOME/.ssh2/ssh-broker-config.xml" on
Linux.

Each time the configuration file is saved, a backup of the old configuration is stored in
"%APPDATA%\SSH\ssh-broker-config.xml.bak" on Windows and "$HOME/.ssh2/ssh-broker-
config.xml.bak" on Linux.

Cryptographic Library

Tectia Client can be operated in FIPS mode, using a version of the cryptographic library that has
been validated according to the Federal Information Processing Standard (FIPS) 140-2. In this mode,

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

119

the cryptographic operations are performed according to the rules of the FIPS 140-2 standard. The
OpenSSL cryptographic library is used in the FIPS mode.

Select whether to use the Standard or the FIPS 140-2 certified version of the cryptographic library.

For the default settings, see the section called “Defining Ciphers”, the section called “Defining
MACs”, and for the profile-specific settings, see the section called “Defining Ciphers”, and the
section called “Defining MACs”.

Connection Broker

Select whether to hide the Tectia tray icon from the Windows taskbar notification area, and whether
to show the Exit and Configuration options in the shortcut menu.

File Security (Available on Linux, only)

Select the Check file and directory access permissions check box to enable checking the access
permissions for the user-specific configuration file ($HOME/.ssh2/ssh-broker-config.xml) and
the private key files. By default, file and directory access permissions are not checked.

When the file and directory access permissions are checked, the controls are applied as follows:

• Expected permissions for the user configuration file: only the user has read and write rights. If the
permissions are any wider, the Connection Broker will not start.

• Expected permissions for the private key files: only the user has read and write rights. If the
permissions are any wider, keys that do not pass the check will be ignored.

Defining Default Connection Settings

The Default Connection page allows you to edit the default settings for a user name (the section called
“Defining Connection Settings”), authentication (the section called “Defining Authentication”), ciphers
(the section called “Defining Ciphers”), MACs (the section called “Defining MACs”), KEXs the section
called “Defining KEXs”, server connections (the section called “Defining Server Connections”), and
tunneling (the section called “Defining Default Tunneling Settings”).

Newly created connection profiles will inherit the default settings defined here. The values can be
customized on the profile-specific tabbed pages and they override the default settings. See the section
called “Defining Authentication”, the section called “Defining Ciphers”, the section called “Defining
MACs”, and the section called “Defining Server Connections”.

Defining Connection Settings

On the Connection tab, you can define a default user name to be used when connecting to remote servers.
This connection is useful when several users will be using profiles jointly, either with their own system
user names or with a common user account.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

120 Appendix A Connection Broker Configuration Tools

Figure A.3. The user name and network address family settings for connections

Select the Use current Windows user name option, to automatically apply the Windows user name of
the currently logged in user to connections to remote servers.

Select the Specify user name option and enter a generic user name. Note that the name is case sensitive.

The given user name will be used in connections unless another user name is specified in a connection
profile or connection attempt. In case you select this option but leave the user name field empty, the
Connection Broker will prompt the user for a user name.

In principle, you can enter value "%USERNAME%", but it has the same effect as selecting Use current
Windows user name.

If you specify a host name or the profile contains a host name, the Connection Broker will try to resolve
the address based on the Network address family setting. If you select inet, the Connection Broker will
resolve the host name only with an IPv4 address. If you select inet6, the Connection Broker will resolve
the host name only with an IPv6 address. Selecting Any means that the Connection Broker will resolve
the host name with any IP address (IPv4 or IPv6) available.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

121

Note

You can specify a direct IP address (either IPv4 or IPv6) for the connection using either the
connection profile or the command line. This setting does not restrict the user specified network
family address. For example, the connection will be established to a specified IPv4 address even
if the network address family was set to IPv6.

Settings made in this tab take effect the next time a user logs in.

Defining Authentication

On the Authentication tab, you can define the default user authentication methods.

Figure A.4. Authentication methods for Tectia Client

Select the Use factory defaults check box to use the factory default authentication methods, or clear the
check box to define a custom list of authentication methods.

In Tectia Client 7.0, the factory default authentication methods are, in order:

• Public-key

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

122 Appendix A Connection Broker Configuration Tools

• Password

• Keyboard-interactive

• GSSAPI

The authentication methods are supported on all platforms, except for GSSAPI, which is not available
on IBM z/OS.

To add a new authentication method to the list, click Add and select the method from the drop-down menu.

To remove an authentication method, select the method from the list and click Delete.

Use the arrow buttons to organize the preferred order of the authentication methods. The first method
that is allowed by the Secure Shell server is used. Note that in some cases, the server may require several
authentication methods to be passed before allowing login.

Possible methods for user authentication are:

• Public-key: Users are requested to use public-key authentication. See also Section A.1.4.

• Password: Users are requested to enter a password for authentication.

• Keyboard-interactive: Keyboard-interactive is designed to allow the Secure Shell client to support
several different types of authentication methods, including RSA SecurID, and PAM. For more
information on keyboard-interactive, see Section 4.8.

• GSSAPI: GSSAPI (Generic Security Service Application Programming Interface) is a common
security service interface that allows different security mechanisms to be used via one interface. For
more information on GSSAPI, see Section 4.9.

In the GSSAPI Authentication field, by selecting the Allow Ticket Forwarding check box you can
enable Tectia Client to allow forwarding the Kerberos ticket over several connections.

When using Public-Key Authentication, you can also define which key types are used and how the keys
are selected.

Key selection defines the policy Connection Broker uses when proposing user public keys to the server.
Select the mode from the drop-down list. The options are:

• Try available public keys automatically (the default). With this policy, the client will try the keys
in the following order:

1. Keys with public key available and private key without a passphrase (no user interaction)

2. Keys with public key available but private key behind a passphrase (require a passphrase query,
provided the key is accepted by the server)

3. The rest of the keys, meaning keys that require a passphrase for the public key as well as the private
key.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

123

• Prompt user to select the public key - with this policy, the Connection Broker prompts the user to
select the key from a list of available keys. If authentication with the selected key fails, the client will
prompt the user again to select another key.

Key types defines whether only plain public keys or only certificates are tried during public-key
authentication. Select the key type from the drop-down list. The default is to try both plain public keys
and certificates.

By selecting the Issuer must match server certificate issuer check box, you can make the Connection
Broker filter the user certificates that will be included in the list presented to the user. The client-side
user certificates can be filtered according to their issuer name that is compared to the certificate issuers
requested or accepted by the server. By default, the filtering is not done. This option is useful when a user
has several certificates with different access rights to the same server, for example for a testing role and
for an administrator role. The Connection Broker chooses the relevant certificates that are applicable on
the remote host, and the user can choose the correct certificate from the short-listed ones.

To generate new public-key pairs and to upload the public part of the key to a server, click the Public-
Key Authentication Wizard button. For more information, see the section called “Using the Public-Key
Authentication Wizard”.

Enabled algorithms lists the public-key signature algorithms that are used for authenticating and signing
the user's public key. The algorithms that will be used are those that are configured for both Tectia Server
and the Connection Broker. You can use the up and down arrow buttons to modify the order of the
algorithms. To move an algorithm to the Disabled algorithms list, select it and click the right arrow button.

A list of factory default public-key signature algorithms can be found in Section E.4.

Defining Ciphers

On the Ciphers tab, you can define the encryption algorithms used.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

124 Appendix A Connection Broker Configuration Tools

Figure A.5. Defining a cipher list

Select the Use factory defaults check box to use the factory default algorithms, or define a cipher list
using the arrow buttons. The ciphers are tried in the order they are specified.

A list of factory default ciphers can be found in Section E.1.

Tectia proprietary algorithms are marked with (Tectia) and are operable with Tectia products only. They
correspond to the algorithms that end with @ssh.com in the Connection Broker configuration file.

Defining MACs

On the MACs tab, you can configure the message integrity algorithms used.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

125

Figure A.6. Defining a MAC list

Select the Use factory defaults check box to use the factory default algorithms, or define a MAC list
using the arrow buttons. The MACs are tried in the order they are specified.

A list of factory default MACs can be found in Section E.3

Tectia proprietary algorithms are marked with (Tectia) and are operable with Tectia products only. They
correspond to the algorithms that end with @ssh.com in the Connection Broker configuration file.

The algorithms marked with (OpenSSH) correspond to the algorithms that end with @openssh.com in
the Connection Broker configuration file.

Defining KEXs

On the KEXs tab, you can configure the key exhange methods used.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

126 Appendix A Connection Broker Configuration Tools

Figure A.7. Defining a KEX list

Select the Use factory defaults check box to use the factory default methods, or define a KEX list using
the arrow buttons. The KEX methods are tried in the order they are specified.

A list of factory default KEXs can be found in Section E.2.

Tectia proprietary algorithms are marked with (Tectia) and are operable with Tectia products only. They
correspond to the algorithms that end with @ssh.com in the Connection Broker configuration file.

Defining Server Connections

On the Server tab, you can define advanced server connection settings.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

127

Figure A.8. Defining server connection settings

Use factory defaults

Select the check box to use the default values for the server connection settings.

Idle timeout

Specify how long idle time (after all connection channels are closed) is allowed for a connection
before automatically closing the connection. The default is 5 seconds. Setting a longer time allows
the connection to the server to remain open even after a session (for example, PrivX Desktop GUI)
is closed. During this time, a new session to the server can be initiated without re-authentication.
Setting the time to 0 (zero) terminates the connection immediately when the last channel to the server
is closed.

TCP Connection Timeout

Specify for how long a TCP connection will be attempted to a Secure Shell server. Define the timeout
in seconds, and after that time the TCP connection will be released in case the remote server is down
or unreachable. Setting the value as 0 (zero) means this Tectia setting is disabled and the system
default TCP timeout will be used. By default, the system timeout is used.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

128 Appendix A Connection Broker Configuration Tools

Keepalive interval

Specify an interval (in seconds) for sending keepalive messages to a Secure Shell server. The default
is 0, meaning that no keepalive messages are sent.

Exclusive connection

Select this check box if you want always a new connection opened, instead of reusing a currently
open connection.

Show server banner

Select this check box if you want to have the server banner message file (if it exists) visible to users
before login.

Show authentication success message

Clear this check box if you do not want to have the AuthenticationSuccessMsg messages output
and logged. By default the messages are enabled.

Message delay (seconds)

Sets the time for how long the authentication success message is shown. Default value is 2. When
the value is set to 0, the message is not shown, only logged.

Disconnect message

Sets the message that is shown when you disconnect. By default this is turned off. For a list of accepted
substitution variables, see disconnect-message

Keyboard-interactive message prefix

String shown before the keyboard-interactive prompt. Default value is ${host}> . For a list of
accepted substitution variables, see keyboard-interactive

SFTP compatibility mode

Select a suitable mode for transferring files with SFTP. This setting affects the behavior of the get/
mget/sget and put/mput/sput commands and the recursion level used by the sftpg3 client. The
following options are available:

• Tectia (the default) - sftpg3 transfers files recursively from the current directory and all its
subdirectories.

• OpenSSH - copies only regular files and symbolic links from the specified directory, and no
subdirectories are copied. Otherwise the semantics of the get command are unchanged.

• FTP - the get/put commands are executed as sget/sput meaning that they transfer a single file, and
no subdirectories are copied.

The recursion depth can be overridden by using the sftpg3 client's commands get/put/mget/mput
with command-line option --max-depth="LEVEL". For more information, see sftpg3(1).

Enabled Hostkey Algorithms

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

129

The host key signature algorithms used for server authentication with host keys or certificates are
listed here. The algorithms that will be used are those that are defined in both Tectia Server and
Connection Broker configuration files. This way the use of only certain algorithms, such as SHA-2,
can be enforced by the server.

The host key algorithms are tried in the order they are specified. Exception: If a host key of a server
already exists in the host key store of the client, its algorithm is preferred. You can use the up and
down arrow buttons to modify the order of the algorithms.

A list of factory default host key algorithms can be found in Section E.4.

Disabled Hostkey Algorithms

The host key algorithms listed here are not used for server authentication. To disable a host key
algorithm, select it in the Enabled Hostkey Algorithms list and click the right arrow button.

Defining Default Tunneling Settings

On the Tunneling tab, you can define the default settings for X11 connections and agent forwarding
(tunneling). The defaults are applied to new connection profiles and to those connection profiles that do
not have their own tunneling settings defined.

Figure A.9. Defining default tunneling settings

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

130 Appendix A Connection Broker Configuration Tools

Select the Use factory defaults check box to apply the factory defaults for X11 and agent forwarding.
According to the factory defaults, X11 forwarding is disabled (off) and agent forwarding is enabled (on).

To allow X11 forwarding on the client side, select the Tunnel X11 connections check box.

To disable agent forwarding on the client side, unselect the Allow Agent Forwarding check box.

Defining Proxy Rules

On the Proxy Rules page, you can define proxy rules to be used for connections.

Figure A.10. Defining proxy rules

To add a new proxy rule:

1. Click Add. The Proxy Rule dialog box opens.

2. Select the Type of the rule. The type can be Direct (no proxy), Socks4, Socks5, or Http.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

131

Figure A.11. Defining proxy settings

For other types than direct, enter the proxy Server address and Port.

Select also whether the proxy rules applies to Any connection or only to connections to the specified
Network. In the Network field, you can enter one or more conditions delimited by commas (,). The
conditions can specify IP addresses or DNS names.

The IP address/port conditions have an address pattern and an optional port range
(ip_pattern[:port_range]).

The ip_pattern may have one of the following forms:

• a single IP address x.x.x.x

• an IP address range of the form x.x.x.x-y.y.y.y

• an IP sub-network mask of the form x.x.x.x/y

The DNS name conditions consist of a hostname which may be a regular expression containing the
characters "*" and "?" and a port range (name_pattern[:port_range]).

Click OK.

To edit a proxy rule, select a rule from the list and click Edit.

To delete a proxy rule, select a rule from the list and click Delete.

The rules are read from top down. Use the arrow button to change the order of the rules.

To use these general proxy rules with a connection profile, you must select to do so in the profile settings.
See the section called “Defining Proxy Settings”.

Defining Logging Settings

On the Logging page, you can enable logging and customize the information that will be logged in the
event log. By default logging is disabled.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

132 Appendix A Connection Broker Configuration Tools

Figure A.12. Logging settings

To enable logging of Tectia Client internal events, select how the logs will be saved. In the Log Destination
field:

• Select File to have the log data saved in to a file named in the field on the right. Enter the exact file
name or browse to an existing file.

• Select Event Log to have the Tectia Client data stored in the Event Log of the host.

Each program-internal event has an associated Action and Type. They have reasonable default values,
which are used if no explicit logging settings are made.

The action can be either log or discard.

The event type can be one of the following:

• Informational

• Warning

• Error

• Security success

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

133

• Security failure

For a description of the log events, see Appendix D.

To change whether the event is logged or not, select an event from the list and click Log/Discard. You
can select multiple events by holding down the SHIFT or CTRL key while clicking.

To customize the event action and type, select an event from the list and click Edit. You can select multiple
events by holding down the SHIFT or CTRL key while clicking. The Edit Audit dialog box opens. Select
the Action (log or discard) and the Type (informational, warning, error, security-success
or security-failure) for the event and click OK.

Defining Clients Settings

On the Clients settings page, you can define settings related to clients.

Figure A.13. Client settings

GUI client

Select the Close window after disconnect option to define that also the PrivX Desktop GUI window
is to be closed while disconnecting from a server session by pressing CTRL+D. By default the terminal
remains open, and only the server connection is closed.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

134 Appendix A Connection Broker Configuration Tools

Command line clients

The Quiet mode setting defines whether the command line clients should suppress warnings, error
messages and authentication success messages. The setting affects the command line tools scpg3,
sshg3 and sftpg3.

A.1.3 Defining Connection Profiles

Under Connection Profiles you can configure separate connection settings for each Secure Shell server
you connect to. You can also configure several profiles for the same server, for example, with different
user accounts.

Click Test Connection to open a connection to the remote server. You need to connect to the server once
in order to get the server's host key. Tectia Client will prompt you to verify the received key. Check that it
is valid, preferably by calling the server's administrator, and save the validated key. After this, the locally
saved information on the key will be used in the authentication process automatically.

• To add a connection profile, click Add profile in the Connection Profiles page. Enter a name for the
profile and click OK. By default, the profile name is also used as the hostname of the server.

Newly created connection profiles will inherit the default values for authentication, ciphers, MACs,
KEXs, and advanced server settings defined under the General → Defaults page (the section called
“Defining Default Connection Settings”). The values can be customized on the profile-specific tabbed
pages.

Define the profile settings in the tabbed view as described in the section called “Defining Connection
Settings”, the section called “Defining Authentication”, the section called “Defining Ciphers”, the
section called “Defining MACs”, the section called “Defining KEXs”, the section called “Defining
Server Connections”, the section called “Defining Proxy Settings”, the section called “Defining
Tunneling”,

• You can organize the connection profiles in folders for each server you are connecting to. To add a
folder for connection profiles, click Add folder in the Connection Profiles page. Enter a name for the
folder and click OK. Add connection profiles to the folder by selecting the folder and clicking Add
profile. The profile is created into the folder.

• To move a profile to a different profile folder, select the profile from the list and click Move. Select the
folder where you want to move the profile from the drop-down list and click OK.

• To rename a connection profile or a profile folder, right-click on a profile or a folder name under
Connection Profiles and click Rename. Type a new name, press Enter, and click OK or Apply.

• To remove a connection profile or a profile folder, select a profile or a folder and click Delete. You will
be asked for confirmation. Click OK to proceed with the deletion.

Note that removing a profile folder removes also all profiles in it.

•

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

135

•

Defining Connection Settings

On the Connection tab, you can define the protocol settings used in the connection. Any changed
connection settings will take effect the next time you log in.

Figure A.14. Configuring connection profiles

Host Name

Specify the host name or the IP address of the remote host computer to which you want to connect
with the profile.

Port Number

Define the listen port on the Secure Shell server. The default SSH port number is 22. In case you
know that the remote server uses another port, enter the number in the Port Number field.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

136 Appendix A Connection Broker Configuration Tools

Note

A Secure Shell server program must be listening to the specified port on the remote host
computer or the connection attempt will not succeed. If you are unsure which port the
remote host computer is listening to, contact the system administrator of the remote host.

User Name

Select Use current Windows user name if the connection should always be made using the currently
logged in Windows user name. This is similar to defining %USERNAME% (note the percent signs) as the
user name. %USERNAME% reads the actual user name from an environment variable.

Select Specify user name and enter the user name, if you want to define the user name this profile
will use when connecting to the remote host computer.

Select Prompt user for the user name if the user should enter the user name manually every time
when connecting.

Select Use the Default Connection's user name if you want to apply the generic user name defined
in the General - Default Connection settings.

Advanced

In Compression, select the desired compression setting from the drop-down menu. Valid choices are
zlib and none. Compression is disabled by default.

In Tunnel using profile, use the drop-down list to select a profile for creating a nested tunnel. The
first tunnel will be created to the server defined in the current connection profile, and from there, the
second tunnel will be created to a host defined in the profile selected with the Tunnel using profile
setting. By default, tunneling is disabled.

Usage

This field shows information on where the defined profile is used.

Defining Authentication

On the Authentication tab, you can define the user authentication methods for the profile.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

137

Figure A.15. Configuring authentication methods for the profile

1. Select the Use Defaults check box to use the authentication methods defined on the Default
Connection page (the section called “Defining Authentication”), or clear the check box to define a
custom list of authentication methods.

To add a new authentication method to the list, click Add and select the method from the drop-down
menu.

To remove an authentication method, select a method from the list and click Delete.

Use the arrow buttons to organize the preferred order of the authentication methods. The first method
that is allowed by the Secure Shell server is used. Note that in some cases, the server may require
several authentication methods to be passed before allowing login.

Possible methods for user authentication are:

• Public-key: Use public-key authentication. See also Section A.1.4.

• Password: Use a password for authentication.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

138 Appendix A Connection Broker Configuration Tools

• Keyboard-interactive: Keyboard-interactive is designed to allow the Secure Shell client to support
several different types of authentication methods, including RSA SecurID, and PAM. For more
information on keyboard-interactive, see Section 4.8.

• GSSAPI: GSSAPI (Generic Security Service Application Programming Interface) is a common
security service interface that allows different security mechanisms to be used via one interface. For
more information on GSSAPI, see Section 4.9.

2. If you want to use the profile in non-interactive connections, you can select to store a password with
the profile in the Password Authentication field.

Select Password to enter the actual password string.

Select Password file to enter a path to a file containing the password.

Select Password program to enter a path to a program or a script that outputs the password.

Caution

If the password is given using this option, it is extremely important that the ssh-broker-
config.xml file, the password file, or the program are not accessible by anyone else than
the intended user.

Note

Any password given with the command-line options will override this setting.

3. In the GSSAPI Authentication field, by selecting the Allow Ticket Forwarding check box you can
enable Tectia Client to allow forwarding the Kerberos ticket over several connections.

4. When using Public-Key Authentication, you can also define which key types are used and how the
keys are selected.

Key selection defines the policy Connection Broker uses when proposing user public keys to the server.
Select the mode from the drop-down list. The options are:

• Try available public keys automatically (the default). With this policy, the client will try the keys
in the following order:

a. Keys with public key available and private key without a passphrase (no user interaction)

b. Keys with public key available but private key behind a passphrase (require a passphrase query,
provided the key is accepted by the server)

c. The rest of the keys, meaning keys that require a passphrase for the public key as well as the
private key.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

139

• Prompt user to select the public key - with this policy, the Connection Broker prompts the user
to select the key from a list of available keys. If authentication with the selected key fails, the client
will prompt the user again to select another key.

Key types defines whether only plain public keys or only certificates are tried during public-key
authentication. Select the key type from the drop-down list. The default is to try both plain public keys
and certificates.

By selecting Issuer must match server certificate issuer, you can make the Connection Broker filter
the user certificates that will be included in the list presented to the user. The client-side user certificates
can be filtered according to their issuer name that is compared to the certificate issuers requested or
accepted by the server. By default, the filtering is not done. This option is useful when a user has
several certificates with different access rights to the same server, for example for a testing role and for
an administrator role. The Connection Broker chooses the relevant certificates that are applicable on
the remote host, and the user can choose the correct certificate from the short-listed ones.

To generate a public-key pair and to upload it to the remote server, click the Public-Key
Authentication Wizard button. For instructions, see the section called “Using the Public-Key
Authentication Wizard”.

Enabled algorithms lists the public-key signature algorithms that are used for authenticating and
signing the user's public key. The algorithms that will be used are those that are configured for both
Tectia Server and the Connection Broker. You can use the up and down arrow buttons to modify the
order of the algorithms. To move an algorithm to the Disabled algorithms list, select it and click the
right arrow button.

5. Click OK to save the connection profile.

Using the Public-Key Authentication Wizard

On Windows, you can use the Tectia Public-Key Authentication Wizard to generate and to upload
public-key pairs. The wizard will generate two key files, your private key and your public key.

The new private and public key will be stored on your local computer in the %APPDATA%\SSH\UserKeys
directory. The private key file has no file extension, and the public key has the same base file name as
the private key, but with .pub as the file extension.

Select the Keys and Certificates page under User authentication and click New Key to start the Public-
Key Authentication Wizard.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

140 Appendix A Connection Broker Configuration Tools

Figure A.16. The Public-Key Authentication Wizard

Define the key properties and the required passphrase to protect your key pair; you will be requested to
enter the passphrase always when using the keys to authenticate yourself.

File Name

Type a unique name for the key file. Tectia Client suggest a name consisting of the user name and
the host name.

Comment

In this field you can write a short comment that describes the key pair. You can for example describe
the connection the keys are used for. This field is not obligatory, but helps to identify the key later.

Passphrase

Type a phrase that you have to enter when handling the key. This passphrase works in a similar way
to a password and gives some protection for your private key.

Note

In FIPS mode, due to a FIPS regulation which forbids exporting unencrypted private keys
out of the FIPS module, it is not possible to generate user keys without a passphrase.

Make the passphrase difficult to guess. Use ideally at least 20 characters, both letters and numbers.
Any punctuation characters can be used as well. While the passphrase or private key are never sent

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

141

over the network, a dictionary attack can be used against a private key if it is accessible locally. For
ease of use, an authentication agent is recommended instead of leaving the passphrase empty. By
default ssh-broker-g3 functions as an authentication agent.

Memorize the passphrase carefully, and do not write it down.

For connections where no user interaction is available, you can consider leaving the passprase empty.

Retype passphrase

Type the passphrase again. This ensures that you have not made a typing error.

Click the Advanced Options, to define the type of the key to be generated and the key length to be
different from the defaults. By default, Tectia Client generates a pair of 3072-bit RSA keys.

In the Key Properties fields, you can make the following selections:

Key Type

Select the type of the key to be generated. Available options are Ed25519, RSA, ECDSA and DSA.

Note

In FIPS mode (conforming to FIPS 186-5) RSA, ECDSA and Ed25519 are supported. DSA
has been deprecated.

Key Length

Select the length (complexity) of the key to be generated. Available options are:

• DSA/RSA keys: 2048, 3072, 4096, 5120, 6144, 7168, 8192 bits

• ECDSA keys: 256, 384, 521 bits

• Ed25519 keys: 256 bits

Larger keys of the same key type are more secure, but also slower to generate. A 256-bit ECDSA key
and a 3072-bit RSA key provide equivalent security.

As soon as a new key has been generated, the Wizard proceeds to uploading the key to a remote server. In
case you want to upload an existing key to a remote server, select the key file in the Keys and Certificates
view, and click Upload. The following dialog appears in both cases:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

142 Appendix A Connection Broker Configuration Tools

Figure A.17. Uploading a key

In the Upload Public Key view of the wizard, define the remote host where to upload the key:

Quick connect

Select this option to define the remote Host name and your user name there. The default Secure
Shell port is 22.

Connection profile

Select a Connection profile from the drop-down list that specifies the desired remote host and user
name.

Click Upload to upload the key to the selected server. If you are already connected to the remote server
host, the key upload starts immediately. If you are not connected, you will be prompted to authenticate
on the server (by default with password).

The public key will be uploaded to the default user home directory (%USERPROFILE%\.ssh2 on Windows,
$HOME/.ssh2 on Unix).

Defining Ciphers

On the Ciphers tab, you can define the encryption algorithms used for the profile.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

143

Figure A.18. Defining a cipher list for the profile

Select the Use Defaults check box to use the algorithms defined on the Default Connection page (the
section called “Defining Ciphers”), or define a cipher list using the arrow buttons. The ciphers are tried
in the order they are specified.

Tectia proprietary algorithms are marked with (Tectia) and are operable with Tectia products only. They
correspond to the algorithms that end with @ssh.com in the Connection Broker configuration file.

Defining MACs

On the MACs tab, you can configure the message integrity algorithms used for the profile.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

144 Appendix A Connection Broker Configuration Tools

Figure A.19. Defining a MAC list for the profile

Select the Use Defaults check box to use the algorithms defined on the Default Connection page (the
section called “Defining MACs”), or define a MAC list using the arrow buttons. The MACs are tried in
the order they are specified.

Tectia proprietary algorithms are marked with (Tectia) and are operable with Tectia products only. They
correspond to the algorithms that end with @ssh.com in the Connection Broker configuration file.

Defining KEXs

On the KEXs tab, you can configure the key exchange methods used for the profile.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

145

Figure A.20. Defining a KEX list for the profile

Select the Use Defaults check box to use the methods defined on the Default Connection page (the
section called “Defining KEXs”), or define a KEX list using the arrow buttons. The KEXs are tried in
the order they are specified.

Tectia proprietary algorithms are marked with (Tectia) and are operable with Tectia products only. They
correspond to the algorithms that end with @ssh.com in the Connection Broker configuration file.

Defining Server Connections

On the Server tab, you can define advanced server connection settings for the profile.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

146 Appendix A Connection Broker Configuration Tools

Figure A.21. Defining server connection settings for the profile

Use Defaults

Select the check box to use the values defined on the Default Connection page (the section called
“Defining Server Connections”) for the server connection settings.

Idle timeout

Specify how long idle time (after all connection channels are closed) is allowed for a connection
before automatically closing the connection. The default is 5 seconds. Setting a longer time allows
the connection to the server to remain open even after a session (for example, PrivX Desktop GUI)
is closed. During this time, a new session to the server can be initiated without re-authentication.
Setting the time to 0 (zero) terminates the connection immediately when the last channel to the server
is closed.

TCP connection timeout

Specify for how long a TCP connection will be attempted to a Secure Shell server. Define the timeout
in seconds. After the defined time the TCP connection will be released in case the remote server is

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

147

down or unreachable. Setting the value as 0 (zero) means that the default system TCP timeout will
be used.

Keepalive interval

Specify an interval (in seconds) for sending keepalive messages to a Secure Shell server. The default
is 0, meaning that no keepalive messages are sent.

Exclusive connection

Select this check box if you want that the profile always opens a new connection, instead of reusing
a currently open connection.

Show server banner

Select the check box if you want to have the server banner message file (if it exists) visible to users
before login.

Enabled Hostkey Algorithms

This list shows the host key signature algorithms used for server authentication with host keys or
certificates. The algorithms that will be used are those that are defined in both Tectia Server and
Connection Broker configuration files. This way the use of only certain algorithms, such as SHA-2,
can be enforced by the server.

The host key algorithms are tried in the order they are specified, with one exception: If a host key of
a server already exists in the host key store of the client, its algorithm is preferred. You can use the
up and down arrow buttons to modify the order of the algorithms.

Disabled Hostkey Algorithms

The host key algorithms listed here are not used for server authentication. To disable a host key
algorithm, select it in the Enabled Hostkey Algorithms list and click the right arrow button.

Defining Proxy Settings

On the Proxy tab, you can select proxy settings for the profile.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

148 Appendix A Connection Broker Configuration Tools

Figure A.22. Defining proxy settings for the profile

No proxy

Select this option if you do not want to use a proxy.

Use proxy rules

Select this option to use the proxy rules defined in the General settings Proxy Rules page (the section
called “Defining Proxy Rules”).

Specify a proxy for this profile only

Click Add to add a new proxy definition for this profile.

Figure A.23. Defining alternate proxy for the profile

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

149

Select the Type of the rule. The type can be Direct, Socks4, Socks5, or Http.

For other types than direct, enter the address of the proxy Server and Port.

Defining Tunneling

Tunneling, or port forwarding, is a way of forwarding otherwise unsecured TCP traffic through an
encrypted Secure Shell connection (tunnel). You can secure for example POP3, SMTP, and HTTP
connections that would otherwise be unsecured.

The tunneling settings for the connection profile are configured using the Tunneling tab. Any changed
tunneling settings will take effect the next time you log in.

Figure A.24. Defining tunneling through a profile

Note

The client-server applications using the tunnel will carry out their own authentication procedures
(if any) the same way they would without the encrypted tunnel.

Forwarding Options

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

150 Appendix A Connection Broker Configuration Tools

It is possible to define separately for each connection profile whether X11 and/or agent forwarding are
enabled, or whether the general default forwarding settings are applied to the profile.

Use Defaults

Select this option to make the profile follow the default settings for X11 and agent forwarding defined
on the Defaults - Tunneling tab (the section called “Defining Default Tunneling Settings”).

Tunnel X11 connections

To allow X11 forwarding for this connection profile, select this check box.

Tectia Client can securely tunnel (forward) X11 graphic connections from the remote host computer
to an X Windows server running on the local computer.

Note

A prerequisite for X11 tunneling is that you have an X emulator (such as eXceed or
Reflection X) running in passive mode on the Windows computer.

To tunnel (forward) X11 traffic, do the following actions:

1. Install an X server (X emulation) program on Windows (eXceed, Reflection X, or the like).

2. Start Tectia Client.

3. Select the Tunneling tab of the Connection Profiles page and make sure that the Tunnel X11
connections check box is selected.

4. Save your settings for Tectia Client.

5. Restart Tectia Client and log into the remote host.

6. Start the X server (X emulation) program.

7. To test the tunneling, run xterm or xclock from Tectia Client.

For more information, see Section 6.3.

Allow Agent Forwarding

To allow agent forwarding on the client side for this connection profile, select this check box.

In agent forwarding, Secure Shell connections and public-key authentication data are forwarded from
one server to another without the user having to authenticate separately for each server.

For more information, see Section 6.4.

Local Tunnels

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

151

There are two types of tunnels that can be defined for application tunneling, local (outgoing) tunnels and
remote (incoming) tunnels.

Local tunnels protect TCP connections that your local computer forwards from a specified local port
to a specified port on the remote host computer you are connected to. It is also possible to forward the
connection beyond the remote host computer, but the connection is encrypted only between Tectia Client
and Tectia Server.

Remote tunnels protect TCP connections that a remote host forwards from a specified remote port to a
specified port on your local computer.

To edit local tunnel definitions, click the Local tunnels tab.

To add a new local tunnel, click Add. The Local Tunnel dialog box opens.

Figure A.25. Defining a local tunnel

The following fields are used to define a local tunnel:

• Type: Select the type of the tunnel from the drop-down list. Valid choices are TCP and FTP. If you are
tunneling an FTP connection, set the tunnel type as FTP. For other protocols, set the tunnel type as TCP.

Note

If the Secure Shell server and the FTP server are located on different computers, FTP
tunneling works only if FTP is set to run in passive mode. If the Secure Shell server and the
FTP server are located on the same computer, tunneling works regardless of whether FTP is
running in passive or active mode. For more information on FTP tunneling, see Section 6.1.3.

• Listen port: This is the number of the local port which the tunnel listens to or captures.

Note

The protocol or application that you wish to create the tunnel for may have a fixed port number
(for example 143 for IMAP) that it needs to use to connect successfully. Other protocols or

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

152 Appendix A Connection Broker Configuration Tools

applications may require an offset (for example 5900 for VNC) that you will have to take into
an account.

• Allow local connections only: Select this option if you want to allow only local connections to be
made. This means that other computers will not be able to use the tunnel created by you. By default,
only local connections are allowed. This is the right choice for most situations.

Consider the security implications carefully if you decide to also allow outside connections.

• Destination host: This field defines the destination host for the tunneling. The default value is
localhost.

Note

The destination host is resolved by the Secure Shell server, so here localhost refers to the
Secure Shell server host you are connecting to.

• Destination port: The destination port defines the port that is used for the forwarded connection on
the destination host.

To edit a tunnel definition, select a tunnel from the list and click Edit. The Local Tunnel dialog opens.

To delete a tunnel definition, select a tunnel from the list and click Delete to remove a tunnel. Note that
the selected tunnel will be removed immediately, with no confirmation dialog.

For more information on local tunnels, see Section 6.1.

Remote Tunnels

Remote (incoming) tunnels protect TCP connections that the remote host forwards from a specified remote
port to the specified port on your local computer.

Click the Remote tunnels tab to edit incoming tunnel definitions. Click Add to open the Remote Tunnel
dialog box.

Figure A.26. Defining a remote tunnel

The following fields are used to define a remote tunnel:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Defining User Authentication 153

• Type: Select the type of the tunnel from the drop-down list. Valid choices are TCP and FTP. For more
information on FTP tunneling, see Section 6.1.3.

• Listen port: Enter the port that the tunnel listens to or captures from the remote host computer.

Note

Privileged ports (below 1024) can be forwarded only when logging in with root privileges on
the remote host computer.

• Destination host: Define the destination host for the port forwarding. The default value is localhost.

Note

Here localhost refers to your local computer. Also note that if the connection from the remote
host computer is forwarded beyond your local computer, that connection is unsecured.

• Destination port: Define the port that is used for the forwarded connection on the destination host.

To edit a tunnel definition, select a tunnel from the list and click Edit. The Remote Tunnel dialog opens.

To delete a tunnel definition, select a tunnel from the list and click Delete to remove a tunnel. Note that
the selected tunnel will be removed immediately, with no confirmation dialog.

For more information on remote tunnels, see Section 6.2.

A.1.4 Defining User Authentication

Under User Authentication, you can configure settings related to public-key and certificate
authentication. See the section called “Managing Keys and Certificates” and the section called “Managing
Key Providers”.

To enable or disable public-key authentication, see the section called “Defining Default Connection
Settings” and the section called “Defining Authentication”.

Managing Keys and Certificates

On the Keys and Certificates page, you can add key and certificate files used in user authentication and
directories for them, generate a new key, upload a key to a server, or change the passphrase for a key.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

154 Appendix A Connection Broker Configuration Tools

Figure A.27. Defining keys and certificates

Default keys

The default location of user keys.

Default certificates

The default location of user certificates.

Additional Directories and Files

Additional key directories and files explicitly added to the Tectia Client configuration.

• Click the Add directory button to add a directory of keys or certificates.

• Click the Add file button to add a key or certificate file.

• Select a directory or a file and click the Delete button to remove it. The reference to the directory,
the key or certificate file is removed from the configuration. The keys themselves are not removed
from the disk.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

155

Key and Certificate List

All public keys and certificates known to Tectia Client are listed in this field. That is, those keys
and certificates stored in locations in Default keys, Default certificates and Additional Directories
and Files fields. Also the keys and certificates from external key providers are shown here (see the
section called “Managing Key Providers”.

The value shown in the Status field can be:

• locked - The file is passphrase protected and the passphrase is not known to the Connection Broker.
Uploading the file to a remote host unlocks it.

• open - The passphrase is known to the Connection Broker.

• If the field is empty, the file is not passphrase protected.

You can modify the key details by selecting a key file in the list and clicking a button at the bottom.

Click Change passphrase to change the passphrase of a selected key. Note that the command may
not be supported for all key types.

Click Upload to upload the key to a remote server. You can only upload plain public keys. See also
the section called “Uploading Public Keys Automatically”.

Click New key to start the key generation wizard. The new key will be added to the Default keys
directory and it will become visible in the Key and Certificate List field. For a description of the
wizard, see the section called “Using the Public-Key Authentication Wizard”.

Note

The user-specific Application Data directory, where the public key files are stored, is hidden
by default. To view hidden directories, change the setting in Windows Explorer. For example,
select Organize → Folder and search options on the menu. On the View tab, under Hidden
files and folders, select Show hidden files, folders and drives.

User key renewal period

Set how many days it takes for automatic key rotation to happen. This affects the user keys in both
the default key location, as well as the locations defined as additional directories above. Seperate key
files do not support key rotation. If rotation period is set to 0, the automatic key rotation is disabled.

When connecting to a host, the client will attempt to replace any keys older than the key rotation
period with newly generated keys. This will not work if the server does not allow users to upload keys.

Warning: If the same private key has been copied to multiple clients, replacing the public key from
one of them will break the others.

Managing Key Providers

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

156 Appendix A Connection Broker Configuration Tools

On the Key Providers page you can define the settings of external key providers used in user
authentication. Available key providers are Microsoft Crypto API and PKCS #11.

Figure A.28. Defining key providers

Microsoft Crypto API

Tectia Client can access keys via Microsoft Crypto API (MSCAPI). MSCAPI is a standard
cryptographic interface used in Microsoft Windows systems.

Microsoft Crypto API (MSCAPI) providers can be enabled by selecting the Enable Microsoft
Crypto API check box. If you enable the MSCAPI providers, you can use software keys and
certificates created by Microsoft applications.

PKCS #11

By using the PKCS #11 provider, Tectia Client can use keys and certificates stored in PKCS #11
tokens (for example, smart cards or USB tokens).

Click Add to define a PKCS #11 provider.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Defining Server Authentication 157

Figure A.29. Defining a PKCS #11 provider, Aladdin eToken DLL path shown
as an example

Use the Dynamic library to define a dynamic library containing the PKCS #11 driver.

Use the Slots to define slots. A slot is a logical reader that potentially contains a token. Slots are
manufacturer- specific. They are defined with an integer. Examples: "0,1", "0-3, !2", "2".

A.1.5 Defining Server Authentication

Under Server Authentication, you can define how Tectia Client authenticates remote server hosts.

• To use public keys in server authentication, define the settings as described in the section called
“Managing Host Keys”.

• To apply certificates, define the settings as described in the section called “Managing CA Certificates”.

• Settings required for LDAP usage are described in the section called “Managing LDAP Server Settings”.

• To define regular intervals for fetching certificate revocation lists (CRLs), see the section called
“Managing CRL Prefetch Settings”.

Managing Host Keys

On the Host Keys page, you can add new public host keys, define the host key acceptance policy, and
view and manage known host keys used in server authentication. Known host keys mean keys already
stored to the user-specific %APPDATA%\SSH\Hostkeys directory.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

158 Appendix A Connection Broker Configuration Tools

Figure A.30. Defining server host keys settings

Note

The host key policy settings have changed in version 6.1.4. Tectia Connections Configuration
GUI updates the user-specific configuration automatically to use the new policy based on the
old Strict host key checking, Accept unknown host keys, and Always show host key prompt
settings. The interpretation of the old policy to the new policy is shown in Table A.2.

The Host Keys view includes the following options:

Check for Host Key

You can check if a public host key of a remote server exists on your client, and view its fingerprint.
To check the host key, enter the name of the server in the Host field and the listener port number
in the Port field, and click Check.

Note that wildcard characters are not allowed, specify the exact host name and port.

When a public host key for the specified server is found on the client, a dialog-box shows where the
host key is stored and what is the fingerprint of the public key. The fingerprint is shown in the SSH
Babble format, consisting of a series of pronounceable five-letter words in lower case and separated
by dashes. See an example below.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

159

Figure A.31. Server public host key information

For more information on server public host keys, see Section 4.2.

Delete Host Key

In case you want to delete a known public host key from the client side, enter the name of the relevant
server in the Host field and the listener port number in the Port field, and click Delete.

A dialog box appears asking you to confirm or to cancel the deleting of the host key.

Add Host Key

Click the Add Key button to add a new host key to your known host keys directory. The Connection
Broker opens a file manager view where you can browse to the key location and select the host key
you want to copy.

Host Key Policy

Select the policy you want to apply to the checking of server host keys and to the handling of unknown
server host keys.

Note

This setting strongly affects the security of the client side host.

The options are:

• Ask - the default - the user will be asked to verify and accept the server public host keys, if the
keys are not found in the host key store or if the keys have changed. The user can decide whether
the key is to be stored to %APPDATA%\SSH\Hostkeys, or used once without storing it, or cancelled.
Connection is allowed only to a server whose host key is either found in the known host keys
directory or accepted by the user currently.

This policy requires an interactive connection to get a response from the user. If the Ask option is
applied on a non-interactive connection, the connection will be closed.

• Strict - the connection to the server will be allowed only if the host key is found in the user's
known host keys storage. Otherwise, the connection will be closed. This option expects that all
acceptable server host keys have already been stored on the client. No new host key's will be stored,
and connections to any servers that have changed host keys will be closed.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

160 Appendix A Connection Broker Configuration Tools

This option can be used on non-interactive connections, once the host keys have been received by
other means. This policy provides maximum protection against man-in-the-middle attacks.

• Trust on first use - new host keys are stored without prompting the user to accept them.
Connections to servers offering a changed host key will be closed. This policy should be used only
when server host keys cannot be added to the key storage by any other means.

• Advisory - not recommended - new host keys are stored without prompting the user to accept
them, and connections are allowed also to servers offering a changed host key. Changed keys are
not stored on the client, and data about opening connections with them are logged, provided that
logging is enabled on the Connection Broker.

If you choose this policy, make sure the Connection Broker has logging activated in the General -
Logging view, see the section called “Defining Logging Settings”. Then you have the possibility
to detect any connections with changed host keys in the logs.

Caution

Consider carefully before you activate the Advisory policy, as it practically disables
server authentication and makes the connection vulnerable to active attackers.

Rotation

Select the rotation options you want to apply to the server host keys.

The options are:

• No - Disables key rotation.

• Yes - Enables key rotation.

• Append only - Enables key rotation. When this option is selected, the new key file is appended
to the keyfile, without the old keys being removed.

• Tectia only - the default - Enables key rotation, but only for Tectia servers. This option requires
enabling on the server also.

Managing CA Certificates

On the Certificates page, you can manage trusted CA certificates.

For more information on server certificate authentication, see Section 4.3.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

161

Figure A.32. Defining CA certificates

To add a CA certificate, click the Add button and select the certificate you want to add.

You can add X.509 certificate(s) as such. To add certificates from a PKCS #7 package (.p7b), you must
first extract the CA certificates from the package by specifying the -7 option with ssh-keygen-g3 on the
command line:

> ssh-keygen-g3 -7 certfile.p7b

You can then add the extracted CA certificates.

The following fields are displayed on the CA certificate list:

• Issued to: The certification authority to whom the certificate has been issued.

• Issued by: The entity who has issued the CA certificate.

• Expiration date: The date that the CA certificate will expire.

• Filename: The file containing the CA certificate.

CRL Checking

Select the Disable check box to prevent the use of a certificate revocation list (CRL). A CRL is used
to check if any of the used server certificates have been revoked.

Note

Disabling CRL checking is a security risk and should be done for testing purposes only.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

162 Appendix A Connection Broker Configuration Tools

OCSP responder URL

The OCSP Responder Service provides client applications a point of control for retrieving real-time
information on the validity status of certificates using the Online Certificate Status Protocol (OCSP).

For the OCSP validation to succeed, both the end-entity (=Secure Shell server) certificate and the
OCSP responder certificate must be issued by the same CA. If the certificate has an Authority Info
Access extension with an OCSP Responder URL, it is only used if there are no configured OCSP
responders. It is not used if any OCSP responders have been configured.

If an OCSP responder is defined in the configuration file or in the certificate, it is tried first; only if
it fails, traditional CRL checking is tried, and if that fails, the certificate validation returns a failure.

Enable endpoint identity check

Specifies whether the client will verify the server's hostname or IP address against the Subject Name
or Subject Alternative Name (DNS Address) specified in the server host certificate. By default,
Enable endpoint identity check is enabled (option yes). The other options are no, and ask.

If No is selected, the fields in the server host certificate are not verified and the certificate is accepted
based on the validity period and CRL check only.

Caution

Disabling the endpoint identity check on the client is a security risk. Then anyone with a
certificate issued by the same trusted CA that issues the server host certificates can perform
a man-in-the-middle attack on the server.

If ask is selected, the user will be prompted to verify the certificate information and to either accept
or cancel the connection.

Enforce digital signature in key usage

One of the compliance requirements of the US Department of Defense Public-Key Infrastructure
(DoD PKI) is to have the Digital Signature bit set in the Key Usage of the certificate. To fulfill the
compliance requirement by enforcing digital signature in key usage, select this check box.

Endpoint domain

Specify the default domain used in the end-point identity check. This is the default domain part of
the remote system name and it is used if only the base part of the system name is available.

If the default domain is not specified, the end-point identity check will still work with short host
names. For example, when a user tries to connect to a host "rock" giving only the short host name and
the certificate contains the full DNS address "rock.example.com", the connection will be opened
and Tectia Client will issue a warning about accepting a connection to "rock".

HTTP proxy URL

Specify the HTTP proxy used when making LDAP or OCSP queries for certificate validity.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

163

The format of the address is "http://username@proxy_server:port/network/

netmask,network/netmask... ". The network/netmask part is optional and defines the
network(s) that are connected directly (without the proxy).

SOCKS server URL

Specify the SOCKS server used when making LDAP or OCSP queries for certificate validity.

The format of the address is "socks://username@socks_server:port/network/

netmask,network/netmask... ". The network/netmask part is optional and defines the
network(s) that are connected directly (without the SOCKS server).

Managing OpenSSH CA Keys

On the OpenSSH CA Keys page, you can manage OpenSSH certificates.

To add an OpenSSH certificate, click the Add button.

To delete an OpenSSH certificate, select the certificate from the list, and click Delete.

Managing LDAP Server Settings

On the LDAP Servers page, you can define LDAP servers used for fetching CRLs and/or subordinate CA
certificates based on the issuer name of the certificate being validated.

CRLs are automatically retrieved from the CRL distribution point defined in the certificate to be verified
if the point exists.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

164 Appendix A Connection Broker Configuration Tools

Figure A.33. Defining LDAP servers

To add an LDAP server, click the Add button. Define the hostname and port for the server.

Figure A.34. Adding an LDAP server

To edit an LDAP server, select the server from the list and click Edit.

To delete an LDAP server, select the server from the list and click Delete.

Managing CRL Prefetch Settings

On the CRL Prefetch page, you can define certificate revocation lists (CRLs) to be fetched from the
defined location at regular intervals. The CRL distribution point can be either a standard format LDAP
or HTTP URL, or it can refer to a file. The file format must be either binary DER or base64, PEM is
not supported.

CRLs are automatically retrieved from the CRL distribution point defined in the certificate to be verified
if the point exists.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Defining Automatic Tunnels 165

Figure A.35. Defining CRL prefetch settings

To add a CRL prefetch address, click Add. The CRL Prefetch dialog box opens.

Figure A.36. Adding a CRL prefetch setting

Enter the URL of the CRL distribution point and the Interval how often the CRL is downloaded and
click OK. The default download interval is 3600 (seconds).

In case the CRL distribution point refers to a file, enter the file URL in this format:

file:///absolute/path/name

To edit an existing CRL prefetch setting, select the setting from the list and click Edit.

To delete an existing CRL prefetch setting, select the setting from the list and click Delete.

A.1.6 Defining Automatic Tunnels

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

166 Appendix A Connection Broker Configuration Tools

On the Automatic Tunnels page, you can create listeners for local tunnels that are started automatically
when the Connection Broker starts up. The actual tunnel is formed the first time a connection is made to
the listener port. If the connection to the server is not open at that time, it will be opened automatically
as well.

Figure A.37. Defining automatic tunnels

When the Connection Broker starts, the list of the automatic tunnels is read, and the connection initiating
applications will be matched to the rules defined here.

Select Automatic Tunnels in the tree menu and click Add to open the Automatic Tunnel dialog box.

Figure A.38. Adding a new automatic tunnel

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Configuration File for the Connection Broker 167

• Type: Select the type of the tunnel from the drop-down list. Valid choices are TCP and FTP.

• Listen port: This is the number of the local port that the tunnel listens to, or captures. Do not use a
reserved port number.

Note

The protocol or application that you wish to create the tunnel for may have a fixed port number
(for example 143 for IMAP) that it needs to use to connect successfully. Other protocols or
applications may require an offset (for example 5900 for VNC) that you will have to take into
account.

• Allow local connections only: If you want to allow only local connections to be made, leave this check
box selected. This means that other computers will not be able to use the tunnel created by you. By
default, only local connections are allowed. This is the right choice for most situations. You should
carefully consider the security implications if you decide to also allow outside connections.

• Destination host: This field defines the destination host for the port forwarding. The default value is
localhost.

Note

The value of localhost is resolved by the Secure Shell server, so here localhost refers to the
Secure Shell host you are connecting to.

• Destination port: The destination port defines the port that is used for the forwarded connection on
the destination host.

• Tunnel using profile: Select the profile to use for the tunnel.

To edit an automatic tunnel, select a tunnel from the list and click Edit.

To delete an automatic tunnel, select a tunnel from the list and click Delete.

For more information on tunneling, see Section 6.1.

A.2 Configuration File for the Connection Broker

The elements of the XML-based Connection Broker configuration file ssh-broker-config.xml are
described in ssh-broker-config(5).

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

168 Appendix A Connection Broker Configuration Tools

ssh-broker-config

ssh-broker-config — Tectia Connection Broker configuration file format

The Connection Broker configuration file ssh-broker-config.xml is used by Tectia Client on Unix
and Windows. The Connection Broker configuration file must be a valid XML file that follows the ssh-
broker-ng-config-1.dtd document type definition.

Connection Broker Files

The Connection Broker reads three configuration files (if all are available):

1. The ssh-broker-config-default.xml file is read first. It holds the factory default settings. It is not
recommended to edit the file, but you can use it to view the default settings.

This file must be available and correctly formatted for the Connection Broker to start.

2. Next, the Connection Broker reads the global configuration file. The settings in the global configuration
file override the default settings.

If the global configuration file is missing or malformed, the Connection Broker will start normally, and
will read the user-specific configuration file, instead. A malformed global configuration file is ignored
and the default settings or user-specific settings, if they exist, are used instead.

3. Last, the Connection Broker reads the user-specific configuration file, if it is available. The settings
in the user-specific configuration file override the settings in the global configuration file, with the
following exceptions:

• The following settings from the user-specific configuration are combined with the settings of the
global configuration file:

• In general element, the key-stores, cert-validation and file-access-control settings

• In profiles element, all settings

• In static-tunnels element, all settings.

• If a connection profile with the same name has been defined in both the global configuration file
and user-specific configuration file, the latter one is used.

•
If the filter-engine settings have been defined in the global configuration file, and the file is
valid (not malformed), those settings are used, and any filter-engine settings made in the user-
specific configuration file are ignored.

If the user-specific configuration file is missing, the Connection Broker will start using the previously
read configuration files. However, if a user-specific configuration exists but is malformed, the
Connection Broker will not start at all.

On Unix, the default configuration file locations are as follows:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

169

•
the default configuration:

/opt/tectia/share/auxdata/ssh-broker-ng/ssh-broker-config-default.xml

• the global configuration: /etc/ssh2/ssh-broker-config.xml

• the user-specific configuration: $HOME/.ssh2/ssh-broker-config.xml

• the XML DTD:

/opt/tectia/share/auxdata/ssh-broker-ng/ssh-broker-ng-config-1.dtd

Note

In Tectia Client 6.1 and earlier on Unix the default auxiliary data directory auxdata was
located in /etc/ssh2/ssh-tectia/. If your ssh-broker-config.xml file was created for
Tectia Client version 6.1 or earlier, please update its DOCTYPE declaration to contain the
current path to the Connection Broker configuration file DTD directory: /opt/tectia/share/
auxdata/ssh-broker-ng/.

On Windows, the default configuration file locations are as follows (where <INSTALLDIR> indicates the
default Tectia installation directory on Windows, see Section 1.1.2):

• Default configuration: "<INSTALLDIR>\SSH Tectia AUX\ssh-broker-ng\ssh-broker-config-

default.xml"

• Global configuration: "<INSTALLDIR>\SSH Tectia Broker\ssh-broker-config.xml"

• User-specific configuration: "%APPDATA%\SSH\ssh-broker-config.xml"

• XML DTD: "<INSTALLDIR>\SSH Tectia AUX\ssh-broker-ng\ssh-broker-ng-config-1.dtd"

The following sections describe the options available in the Connection Broker configuration file. For
more information on the syntax of the configuration file, see the XML DTD.

Environment Variables

Two kinds of environment variables can be used in the Connection Broker configuration file. In addition
to the system-level environment variables, you can use special variables that are Tectia specific. The
environment variables take precedence over the special variables. So if an environment variable and a
special variable have the same name, the environment variable will be used.

All alphanumeric characters and the underscore '_' sign are allowed in environment variables. The
variable name ends to the first character that is not allowed.

You can define for example file or directory paths with environment variables, and they will be expanded
to their values as explained below.

%VARIABLENAME%

Replaced with the value of the environment variable if one has been defined. The variable is matched
case-insensitively. If the variable is not defined, the string '%VARIABLENAME%' is the result.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

170 Appendix A Connection Broker Configuration Tools

$VARIABLENAME

Replaced with the value of the environment variable if one has been defined. The variable is matched
case-sensitively on Unix and case-insensitively on Windows. If the variable is not defined, it is
replaced with an empty string.

${VARIABLENAME}text

Replaced with the value defined for '$VARIABLENAME' with the 'text' appended to it.

${VARIABLENAME:-default_value}

Replaced with the value defined for '$VARIABLENAME', or replaced with the 'default_value' if the
variable is not set.

The Tectia specific special variables are:

%U or %username%

Replaced with the currently logged in user name.

%username-without-domain%

Replaced with the currently logged in user name in short format, i.e. without the domain part.
Available on Windows.

%G or %groupname%

Replaced with the group name of the currently logged in user.

%D or %homedir%

Replaced with the home directory defined for the currently logged in user.

%IU or %userid%

Replaced with the user identifier defined for the currently logged in user.

%IG or %groupid%

Replaced with the group identifier defined for the currently logged in user.

%installdir%

Replaced with the installation directory.

The special variables can also be entered using the Unix format, for example, $username.

Document Type Declaration and the Root Element

The Connection Broker configuration file is a valid XML file and starts with the Document Type
Declaration.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

171

The root element in the configuration file is secsh-broker. It can include general, default-settings,
profiles, static-tunnels, gui, and logging elements.

An example of an empty configuration file is shown below:

<!DOCTYPE secsh-broker SYSTEM "ssh-broker-ng-config-1.dtd">

<secsh-broker version="1.0">

 <general />

 <default-settings />

 <profiles />

 <static-tunnels />

 <gui />

 <logging />

</secsh-broker>

The general Element

The general element contains settings such as the cryptographic library and the key stores to be used.

The general element can contain zero or one instance of the following elements: crypto-lib, cert-
validation, key-stores, user-config-directory, protocol-parameters; and multiple known-
hosts elements.

crypto-lib

This element selects the cryptographic library mode to be used. Either the standard version
(standard) or the FIPS 140-2 certified version (fips) of the cryptographic library can be used. The
library name is given as a value of the mode attribute. By default, standard cryptographic libraries are
used. The OpenSSL cryptographic library is used in the FIPS mode.

FIPS mode will be used if it is so specified either in the global or the user configuration file (or both).

<crypto-lib mode="fips" />

For a list of platforms on which the FIPS library has been validated or tested, see Tectia Client/Server
Product Description.

cert-validation

This element defines public-key infrastructure (PKI) settings user for validating remote server
authentication X.509v3 certificates or OpenSSH CA-key for validating OpenSSH format server
authentication certificates. The element can have the following attributes: end-point-identity-
check, default-domain, http-proxy-url, socks-server-url, cache-size, max-crl-size,
external-search-timeout, max-ldap-response-length, ldap-idle-timeout and max-path-
length.

The end-point-identity-check attribute specifies whether the client will verify the server's host
name or IP address against the Subject Name or Subject Alternative Name (DNS Address) specified in
the server host certificate. The default value is yes. If set to no, the fields in the server host certificate
are not verified and the certificate is accepted based on the validity period and CRL check only.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

172 Appendix A Connection Broker Configuration Tools

Caution

Setting end-point-identity-check="no" is a security risk. Then anyone with a
certificate issued by the same trusted certification authority (CA) that issues the server host
certificates can perform a man-in-the-middle attack on the server.

Alternatively, if set to ask, the user can decide to either cancel or continue establishing the connection
in case that the server's host name does not match the one in the certificate.

The default-domain attribute can be used when the end-point identity check is enabled. It specifies
the default domain part of the remote system name and it is used if only the base part of the system
name is available. The default-domain is appended to the system name if it does not contain a dot
(.).

If the default domain is not specified, the end-point identity check will still work with short host
names. For example, when a user tries to connect to a host "rock" giving only the short host name and
the certificate contains the full DNS address "rock.example.com", the connection will be opened
and Tectia Client will issue a warning about accepting a connection to "rock".

The http-proxy-url attribute defines an HTTP proxy and the socks-server-url attribute defines
a SOCKS server for making LDAP or OCSP queries for certificate validity.

The address of the server is given as the value of the attribute. The format of the address is socks://
username@socks_server:port/network/netmask,network/netmask ... (with a SOCKS
server) or http://username@proxy_server:port/network/netmask,network/netmask ...

(with an HTTP proxy).

For example, to make the SOCKS server use host socks.ssh.com and port 1080 for connections
outside of networks 192.196.0.0 (16-bit domain) and 10.100.23.0 (8-bit domain), and to get these
networks connected directly, set socks-server-url as follows:

"socks://mylogin@socks.ssh.com:1080/192.196.0.0/16,10.100.23.0/24"

The cache-size attribute defines the maximum size (in megabytes) of in-memory cache for the
certificates and CRLs. The allowed value range is 1 to 512, and the default value is 300 MB.

The max-crl-size attribute defines the maximum accepted size (in megabytes) of CRLs. Processing
large CRLs can consume a considerable amount of memory and processing power, so in some
environments it is advisable to limit their size. The allowed value range is 1 to 512, and the default
value is 50 MB.

The external-search-timeout attribute defines the time limit (in seconds) for external HTTP and
LDAP searches for CRLs and certificates. The allowed value range is 1 to 3600 seconds, and the
default value is 60 seconds.

The max-ldap-response-length attribute defines the maximum accepted size (in megabytes) of
LDAP responses. The allowed value range is 1 to 512, and the default value is 50 MB.

The ldap-idle-timeout attribute defines an idle timeout for LDAP connections. The validation
engine retains LDAP connections and reuses them in forthcoming searches. The connection is closed

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

173

only after the LDAP idle timeout has been reached. The allowed value range is 1 to 3600 seconds,
and the default idle timeout is 30 seconds.

The max-path-length attribute limits the length of the certification paths when validating
certificates. It can be used to safeguard the paths or to optimize against the paths getting too long
in a deeply hierarchical PKI or when the PKI is heavily cross-certified with other PKIs. Using the
attributes requires knowing the upper limit of the paths used in certificate validation. For example:

<cert-validation max-path-length="6">

 <ldap-server address="ldap://myldap.com" port="389" />

 <dod-pki enable="yes" />

 <ca-certificate name="CA 1" file="ca-certificate1.crt" />

</cert-validation>

In the example, the path is limited to six certificates, including the end-entity and root CA certificates.
If not specified, the default value is 10. Decrease the value to optimize the validation if the maximum
length of the encountered paths in the certificate validation is known.

The cert-validation element can contain multiple ldap-server, ocsp-responder, crl-
prefetch elements, one dod-pki element, and multiple ca-certificate, openssh-ca-key and
key-store elements. The elements have to be in the listed order.

ldap-server

This element specifies an LDAP server address and port used for fetching CRLs and/or
subordinate CA certificates based on the issuer name of the certificate being validated. Several
LDAP servers can be specified by using several ldap-server elements.

CRLs are automatically retrieved from the CRL distribution point defined in the certificate to
be verified if the point exists.

The default value for port is 389.

ocsp-responder

This element specifies an OCSP (Online Certificate Status Protocol) responder service address
in URL format with attribute url. Several OCSP responders can be specified by using several
ocsp-responder elements.

If the certificate has a valid Authority Info Access extension with an OCSP Responder URL, it
will be used instead of this setting. Note that for the OCSP validation to succeed, both the end-
entity certificate and the OCSP Responder certificate must be issued by the same CA.

The validity-period (in seconds) can be optionally defined. During this time, new OCSP
queries for the same certificate are not made but the old result is used. The default validity period
is 0 (a new query is made every time).

crl-prefetch

This element instructs Tectia Client to periodically download a CRL from the specified URL.
The url value can be an LDAP or HTTP URL, or it can refer to a local file. The file format must
be either binary DER or base64, PEM is not supported.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

174 Appendix A Connection Broker Configuration Tools

To download CRLs from the local file system, define the file URL in this format:

file:///absolute/path/name

To download CRLs from an LDAP server, define the LDAP URL in this format:

ldap://ldap.server.com:389/CN=Root%20CA,

 OU=certification%20authorities,DC=company,

 DC=com?certificaterevocationlist

Use the interval attribute to specify how often the CRL is downloaded. The default is 3600
seconds.

dod-pki

One of the compliance requirements of the US Department of Defense Public-Key Infrastructure
(DoD PKI) is to have the Digital Signature bit set in the Key Usage of the certificate. To enforce
digital signature in key usage, set the value of the enable attribute to yes. The default is no.

ca-certificate

This element defines a certification authority (CA) used in server authentication. It can have four
attributes: name, file, disable-crls, and use-expired-crls.

The name attribute must contain the name of the CA.

The element must either contain the path to the X.509 CA certificate file as a value of the file
attribute, or include the certificate as a base64-encoded ASCII block.

CRL checking can be disabled by setting the disable-crls attribute to yes. The default is no.

Expired CRLs can be used by setting a numeric value (in seconds) for the use-expired-crls
attribute. The default is 0 (do not use expired CRLs).

openssh-ca-key

This element defines an OpenSSH certification authority (CA) used in server authentication. It
can have two attributes: name and file.

The name attribute must contain the name of the CA.

The element must either contain the path to the OpenSSH CA-key file as a value of the file
attribute, or include the certificate as a base64-encoded ASCII block.

Generic cert-validation elements except end-point-identity-check do not apply to OpenSSH
certificate validation, as there are no revocation services.

An example of an OpenSSH certificate validation configuration:

<cert-validation end-point-identity-check="ask">

 <openssh-ca-key name="OpenSSH_CA"

 file="openssh_ca_key.pub" />

</cert-validation>

key-store

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

175

This element defines CA certificates stored in an external key store for server authentication.
Currently it is used only on z/OS for CA certificates stored in System Authorization Facility
(SAF).

An example of a certificate validation configuration is shown below:

<cert-validation end-point-identity-check="yes"

 default-domain="example.com"

 http-proxy-url="http://proxy.example.com:8080">

 <ldap-server address="ldap://ldap.example.com:389" />

 <ocsp-responder url="http://ocsp.example.com:8090"

 validity-period="0" />

 <crl-prefetch url="file:///full.path.to.crlfile"

 interval="1800" />

 <dod-pki enable="no" />

 <ca-certificate name="ssh_ca1"

 file="ssh_ca1.crt"

 disable-crls="no"

 use-expired-crls="100" />

</cert-validation>

key-stores

This element defines settings for user public-key and certificate authentication.

Under the <general> element, there can be one <key-stores> instance which in turn can have
any number of <key-store>, <user-keys>, and <identification> elements, and the order of the
elements is free.

Special variables and environment variables can be used when defining the values for the elements.
The following variables can be used and they will be expanded as follows:

• %U = %USERNAME% = user name

• %USERNAME-WITHOUT-DOMAIN% = user name without the domain part

• %IU = %USERID% = user ID (not on Windows)

• %IG = %GROUPID% = user group ID (not on Windows)

• %D = %HOMEDIR% = the user's home directory

• %G = %GROUPNAME% = the name of the user's default group

• %INSTALLDIR% = the installation directory

Also environment variables are replaced with their current values. For example it is possible to use
strings $HOME or %HOME% to expand to user's home directory (if environment variable HOME is set).

Note

Short alias names (for example, %U) are case-sensitive and long alias names (for example,
%USERNAME%) are case-insensitive.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

176 Appendix A Connection Broker Configuration Tools

key-store

Each of the key-store elements configures one key store provider. The key-stores/key-
store element can take the following attributes: type and init.

The type attribute is the key store type. The currently supported types are "mscapi", "pkcs11",
"software", and "zos-saf".

The init attribute is the initialization info specific to the key-store-provider. The initialization
string can contain special strings explained above in key-stores .

For key store configuration examples, see the section called “Key Store Configuration
Examples”.

user-keys

The user-keys element can be used to override the default directory for the user keys. The
user-keys element can take the following attributes:

The directory attribute defines the directory where the user private keys are stored. Enter the
full path.

The passphrase-timeout attribute defines the time (in seconds) after which the passphrase-
protected private key will time out, and the user must enter the passphrase again. The default is
0, meaning that the passphrase does not time out. The value of this element should be longer
than the passphrase-idle-timeout value.

By default, the Connection Broker keeps the passphrase-protected private keys open once the
user has entered the passphrase successfully. This can be changed with the passphrase timeout
options. When passphrase-timeout is set, the private key stays open (usable without further
passphrase prompts) until the timeout expires. The passphrase-timeout attribute sets the hard
timeout, that is set only once when the key is opened and will not be reset even if the key is
used multiple times.

The passphrase-idle-timeout attribute defines the time (in seconds) after which the
passphrase-protected private key will time out unless the user accesses or uses the key. The
passphrase-idle-timeout is reset every time the key is accessed. The default is 0, meaning
that the passphrase never times out.

Both of the timeout options can be set simultaneously, but notice that if the idle timeout is set
longer than the hard timeout, the idle timeout has no effect.

The rotation-period attribute defines the time (in seconds) after which the key will be rotated.
Note that you can use the suffixes m, minutes, h, hours, d and days to define the time period.

identification

The identification element can be used to override the default location of the identification
file that defines the user keys. The identification element can take the following attributes:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

177

The file attribute specifies the location of the identification file. Enter the full path.

The base-path attribute defines the directory where the identification file expects the user
private keys to be stored. This element can be used to override the default relative path
interpretation of the identification file (paths relative to the identification file directory).

The passphrase-timeout attribute defines the time (in seconds) after which the user must enter
the passphrase again. The default is 0, meaning that the passphrase is not re-requested.

The passphrase-idle-timeout attribute defines a time (in seconds) after which the passphrase
times out if there are no user actions. The default is 0, meaning that the passphrase does not
time out.

The timeout settings affect only those private keys that are listed in the identification file.

strict-host-key-checking

Note

This element is deprecated starting from Tectia Client version 6.1.4.

This element is supported in configuration for backwards compatibility and used only if the
policy attribute of the server-authentication-methods/auth-server-publickey element
under default-settings or profiles/profile is not defined. In this case, the host key policy is
interpreted based on the values of this option and the host-key-always-ask and accept-unknown-
host-keys options. See auth-server-publickey for details.

host-key-always-ask

Note

This element is deprecated starting from Tectia Client version 6.1.4.

This element is supported in configuration for backwards compatibility and used only if the
policy attribute of the server-authentication-methods/auth-server-publickey element
under default-settings or profiles/profile is not defined. In this case, the host key policy is
interpreted based on the values of this option and the strict-host-key-checking and accept-
unknown-host-keys options. See auth-server-publickey for details.

accept-unknown-host-keys

Note

This element is deprecated starting from Tectia Client version 6.1.4.

This element is supported in configuration for backwards compatibility and used only if the
policy attribute of the server-authentication-methods/auth-server-publickey element
under default-settings or profiles/profile is not defined. In this case, the host key policy is
interpreted based on the values of this option and the strict-host-key-checking and host-key-
always-ask options. See auth-server-publickey for details.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

178 Appendix A Connection Broker Configuration Tools

Caution

Consider carefully before enabling this option. Disabling the host-key checks makes you
vulnerable to man-in-the-middle attacks.

user-config-directory

This element can be used to change the storage location of the user-specific configuration files away
from the default which is $HOME/.ssh2/ on Unix, and "%APPDATA%\SSH" on Windows. It can be used
for example, if you want to store all client-side configurations to a centralized location.

When this element is added to the global configuration file, the Connection Broker reads the following
user-specific files in the defined location:

• User's key file

• User's own configuration files

• User's known host keys

• User's random_seed file

• Windows GUI profile files: 1.ssh2, 2.ssh2

• The startup batch file for the sftpg3 client: ssh_sftp_batch_file

Note

Stop all existing SSH applications before modifying the user-config-directory setting
in the Connection Broker configuration.

The user-config-directory setting affects all Tectia products running on the same host.

The user-config-directory option takes an attribute path, whose value can be either a directory
path or one of the following variables:

• %U: The user name.

• %username%: The user name.

• %username-without-domain%: The user name without domain definition.

• %D: The user's home directory.

• %homedir%: The user's home directory.

• %USER_CONFIG_DIRECTORY%: The user-specific configuration directory.

• %installdir%: The installation directory.

• %IU: The user's ID, on Unix only

• %userid%: The user's ID, on Unix only

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

179

• %IG: The group ID, on Unix only

• %groupid%: The group ID, on Unix only

The default is %USER_CONFIG_DIRECTORY%. This variable refers to the user-specific configuration
directory: $HOME/.ssh2 on Unix, and %APPDATA%\SSH on Windows. The %USER_CONFIG_DIRECTORY
% variable cannot be used in other settings.

file-access-control

On Unix, this element can be used to enable checking of file access permissions defined for the
global and user-specific configuration files, and for the private keys files. If the permissions are not
as expected, the Connection Broker will refuse to start, or to use certain private keys.

By default this setting is disabled. On Windows, this element has no effect.

The file permissions are checked differently, if the file-access-control element is set in both the
global and user configuration files, or just in one of them. See the following table for details:

Table A.1. Different file-access-control effects

Setting in: Permissions checked in:
Global config User config Global config User config Private key files

yes yes / - checked checked checked
yes no checked checked not checked
no / - yes not checked checked checked
no / - no / - not checked not checked not checked

In the table: "no" means file-access-control enable="no". The "-" sign means that the setting
is not defined in the file at all.

When the file access permissions are checked, the controls are applied as follows:

• Expected permissions for the global configuration file: read rights for all, write rights only for the
user and group. If the permissions are any wider, the Connection Broker will not start.

• Expected permissions for the user configuration file: only the user has read and write rights. If the
permissions are any wider, the Connection Broker will not start.

• Expected permissions for the private key files: only the user has read and write rights. If the
permissions are any wider, keys that do not pass the check will be ignored.

protocol-parameters

This element contains protocol-specific values that can be used to tune the performance. It should be
used only in very specific environments. In normal situations the default values should be used.

The threads attribute can be used to define the number of threads the protocol library uses (fast path
dispatcher threads). This attribute can be used to allow more concurrent cryptographic transforms in
the protocol on systems with more than four CPUs. If the value is set to zero, the default value is used.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

180 Appendix A Connection Broker Configuration Tools

Example of the threads attribute:

<protocol-parameters threads="8" />

known-hosts

This element can be used to specify locations for storing the host keys of known server hosts, and
to define the storage format of the host key files. If no known-hosts directories are specified, the
known host keys are stored to the default directories. See the section called “Files” for the default
locations. On z/OS (only), this element can contain key-store elements.

This element can be used:

• To specify non-default directories that contain the public-key data or public-key files of known
server hosts.

• To specify a non-default location for OpenSSH-style known_hosts files that contain the public-
key data of known server hosts.

• (On z/OS) To specify a SAF key store that contains the certificates of known server hosts.

The server host keys are searched in the known-hosts paths in the order they are specified in the
configuration. The settings of the last defined known-hosts element are used when storing new host
keys.

If you define any known-hosts file settings, the default OpenSSH files will be overridden. So if you
wish to make the Connection Broker use both the default OpenSSH locations and other locations
specified in the configuration, you need to specify all the locations separately.

You can define several known-hosts elements, and each of them can contain one or several attributes:
path, directory, file and filename-format.

The path attribute requires a full path to the known-hosts file or directory as the value. For example:

<known-hosts path="/u/username/.ssh/known_hosts" />

<known-hosts path="/etc/ssh2/hostkeys" />

<known-hosts path="/u/username/.ssh2/hostkeys" />

<known-hosts path="/h/username/hostkeys" filename-format="plain" />

The directory attribute is used to define that known host keys are saved to a non-default directory.
Enter the complete path to the directory as the value. If the defined directory does not exist, it will
be created during the first connection attempt. If a file is found in its place, the connection will be
made but the host key will not be stored, and the user gets a warning about it. The filename-format
attribute can be used together with the directory setting to define in which format the host key files
will be stored. Example of the directory attribute:

<known-hosts directory="<path_to_dir>/MyKEYS"

 filename-format="plain" />

The path or directory (whichever is present) defined in the last known-hosts element in the
configuration file will be used when storing new known host keys. If both attributes are present in
the last known-hosts element, the location specified in the directory attribute will be used.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

181

The file attribute is used to point to an OpenSSH-style known_hosts file. Enter the complete path
to the file as the value. If a directory is found in its place, it is considered an error, and the connection
attempt will fail. In case the known-hosts element only contains the file attribute, and the defined
OpenSSH known_hosts file exists, the received host keys are searched first in the defined file, and if
not found there, the search continues in the default Tectia-specific locations.

Example of the file attribute:

<known-hosts file="<path_to_file>/.ssh2/openSSH_keys" />

An empty file or path attribute will disable the handling of the OpenSSH known_hosts file:

<known-hosts file="" />

or

<known-hosts path="" />

The filename-format attribute defines the format in which new host key files are stored. The
filename-format attribute is only relevant for the last specified known-hosts element and for the
default directory.

The filename-format attribute takes the values: hash (default), plain, and default (equals to
hash).

With value hash, the host key files will be stored in format: keys_<hash>, for example
"keys_182166d2efe5a134d3fb948646e0b48f780bff6c".

With value plain, the file name format will be key_<port>_<hostname>.pub, where <port> is the
port the Secure Shell server is running on and <hostname> is the host name you use when connecting
to the server; for example "key_22_my.example.com.pub".

Setting <known-hosts filename-format="plain" /> changes the storage format of host key files
for the next known-hosts elements or for the default storage location if no other known-hosts
elements are present.

The filename-format="default" alternative can be used as the last option when the same known-
hosts element is used to define several locations for the host keys some of which store the keys in
plain format.

For more information on the host key storage formats, see Section 4.2.1.

key-store

This element defines an external key store for certificates of known server hosts. Currently it is
used only on z/OS for server certificates stored in System Authorization Facility (SAF).

extended

This element is reserved for future use.

Key Store Configuration Examples

Example with Software Provider

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

182 Appendix A Connection Broker Configuration Tools

The software provider handles key pairs stored on disk in standard Secure Shell v2 or legacy OpenSSH
formats and X.509 certificates stored in native X.509, PKCS #7, and PKCS #12 formats.

To add a single key file (for example, /u/exa/keys/enigma and /etc/my_key), specify both the private
key file and the public key file:

<key-stores>

 <key-store type="software"

 init="key_files(/u/exa/keys/enigma.pub,/u/exa/keys/enigma)" />

 <key-store type="software"

 init="key_files(/etc/my_key.pub,/etc/my_key)" />

</key-stores>

To add all keys from a specific directory (for example all keys from /u/exa/keys and /etc/keys):

<key-stores>

 <key-store type="software"

 init="directory(path(/u/exa/keys))" />

 <key-store type="software"

 init="directory(path(/etc/keys))" />

</key-stores>

Example with PKCS #11 Provider

The PKCS #11 provider handles keys and certificates stored in PKCS #11 tokens (for example, smart
cards or USB tokens).

Specify the dynamic library path for the PKCS provider and all or a specific slot. For example, with all
slots:

<key-stores>

 <key-store type="pkcs11" init="dll(/usr/lib/pkcs.so),slots(all)" />

</key-stores>

For example, with one slot named sesam:

<key-stores>

 <key-store type="pkcs11" init="dll(/usr/local/lib/pkcs.so),slots(sesam)" />

</key-stores>

The default-settings Element

The default-settings element defines the default connection-related settings. Profile-specific settings
can override these settings. See the section called “The profiles Element”.

The default-settings element can contain zero or one instance of the following elements in the listed
order: ciphers, macs, kexs, hostkey-algorithms, rekey, authentication-methods, hostbased-
default-domain, compression, proxy, idle-timeout, tcp-connect-timeout, keepalive-

interval, exclusive-connection, server-banners, forwards, extended, remote-environment,
server-authentication-methods, authentication-success-message, sftpg3-mode, terminal-
selection, terminal-bell, close-window-on-disconnect, quiet-mode, checksum, and address-
family.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

183

The default-settings element can take one attribute:

The user attribute can be used to define a default user name to be used when connecting to remote servers.
The value of the user attribute can be one of the following:

• A generic user name that will be used in connections unless another user name is specified in the
connection profile settings or in the connection attempt. Note that the user name is treated case
sensitively.

• "%USERNAME%" can be used to apply the user name of the currently logged in user.

• In case this option is used but left empty, the Connection Broker will prompt the user for a user name.

The default-settings element can contain the following elements:

ciphers

This element defines the ciphers that the client will propose to the server. The ciphers element can
contain multiple cipher elements.

The ciphers are tried in the order they are specified.

cipher

This element selects a cipher name that the client requests for data encryption.

The list of supported ciphers can be found in Section E.1.

<ciphers>

 <cipher name="aes128-cbc" />

 <cipher name="AEAD_AES_256_GCM" />

</ciphers>

macs

This element defines the MACs that the client will propose to the server. The macs element can
contain multiple mac elements.

The MACs are tried in the order they are specified.

mac

This element selects a MAC name that the client requests for data integrity verification.

The list of supported MAC algorithms can be found in Section E.3.

<macs>

 <mac name="hmac-sha2-512" />

</macs>

kexs

This element defines the key exchange methods (KEXs) that the client will propose to the server. The
kexs element can contain multiple kex elements.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

184 Appendix A Connection Broker Configuration Tools

The KEXs are tried in the order they are specified.

kex

This element selects a KEX name that the client requests for the key exchange method.

The list of supported classical and PQC hybrid KEX methods can be found in Section E.2.

<kexs>

 <kex name="ecdh-nistp521-kyber1024-sha512@ssh.com" />

 <kex name="ecdh-sha2-nistp256" />

</kexs>

hostkey-algorithms

This element defines the host key signature algorithms used for server authentication. The algorithms
that will be used are those that are defined in both Tectia Server and Connection Broker configuration
files. This way the use of only certain algorithms, such as SHA-2, can be enforced by the server. The
hostkey-algorithms element can contain multiple hostkey-algorithm elements.

The hostkey algorithms are tried in the order they are specified. Exception: If a host key of a server
already exists in the host key store of the client, its algorithm is preferred.

hostkey-algorithm

This element selects a host key signature algorithm name to be used in server authentication with
host keys or certificates.

The list of supported host key signature algorithms can be found in Section E.4.

<hostkey-algorithms>

 <hostkey-algorithm name="rsa-sha2-256" />

 <hostkey-algorithm name="ssh-dss-sha512@ssh.com" />

</hostkey-algorithms>

rekey

This element specifies the number of transferred bytes after which the key exchange is done again.
The value "0" turns rekey requests off. This does not prevent the server from requesting rekeys,
however. The default is 1000000000 (1 GB).

<rekey bytes="1000000000" />

authentication-methods

This element specifies the authentication methods that are requested by the client-side components.
The authentication-methods element can contain one of each: auth-hostbased, auth-
password, auth-publickey, auth-gssapi, and auth-keyboard-interactive. Alternatively, you
can specify multiple authentication-method elements. The order of these elements is free.

The authentication methods are tried in the order the auth-* or authentication-method elements
are listed. This means that the least interactive methods should be placed first.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

185

When several interactive authentication methods are defined as allowed, Tectia Client will alternate
between the methods and offers each of them in turn to the server in case the previous method failed.

authentication-method

This element specifies an authentication method name. It is included for backwards compatibility.
Use the auth-* elements instead.

The allowed authentication method names are: gssapi-with-mic, publickey, keyboard-
interactive, password, and hostbased.

Tectia Client supports host-based authentication only on Unix platforms.

<authentication-methods>

 <authentication-method name="hostbased" />

 <authentication-method name="gssapi-with-mic" />

 <authentication-method name="publickey" />

 <authentication-method name="keyboard-interactive" />

 <authentication-method name="password" />

</authentication-methods>

auth-hostbased

This element specifies that host-based authentication will be used.

The auth-hostbased element can include a local-hostname element.

local-hostname

This element specifies the local host name, as the value of the name attribute, that is
advertised to the remote server during host-based authentication.

The remote server can use the client host name as a hint when locating the public key for the
client host. This information is not significant to the authentication result, but makes it faster
to find the relevant client host key, if the server has such a big storage of host identities, that
trying them all would be infeasible.

auth-password

This element specifies that password authentication will be used.

auth-publickey

This element specifies that public-key authentication will be used.

The auth-publickey element can include a key-selection element.

The auth-publickey element can include a signature-algorithms attribute. The attribute
defines the public-key signature algorithms used for client authentication, given as a comma-
separated list. The algorithms that will be used are those that are defined in both Tectia Server
and Connection Broker configuration files. This way the use of only certain algorithms, such as
SHA-2, can be enforced. For a list of the supported algorithms, see hostkey-algorithm .

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

186 Appendix A Connection Broker Configuration Tools

<authentication-methods>

 <auth-publickey signature-algorithms="ssh-ed25519,ssh-rsa-sha256@ssh.com"/>

</authentication-methods>

key-selection

This element specifies the key selection policy the client uses when proposing user public
keys to the server. The policy attribute can take the values automatic (default) and
interactive-shy.

In the automatic mode, the client tries keys in the following order:

1. Keys with public key available and private key without a passphrase (no user interaction)

2. Keys with public key available but private key behind a passphrase (one passphrase query)

3. Keys that need a passphrase to get the public key but private key without passphrase
(one user query for each key which is considered and proposed to server, but no user
interaction for actual public-key login)

4. The rest of the keys, that is, keys that need a passphrase to get the public key and also
to get the private key

In the interactive-shy mode, the client does not try any keys automatically, but it prompts
the user to select the key from a list of available keys. If the authentication with the selected
key fails, the client will prompt the user again, removing the already tried key(s) from the
list. If there is only one key candidate available, the key will be tried automatically without
asking the user.

The key-selection element can include the following:

altname-email

altname-upn

extended-key-usage

issuer-name

public-key

subject-name

validity

Example key-selection element:

<key-selection>

 <issuer-name name="CN=issuingcaname" pattern=".*testca.*" />

 <subject-name name="CN=username" pattern=".*username.*" />

 <extended-key-usage oid="ssh-client" explicit="yes" />

 <extended-key-usage oid="1.3.6.1.4.1.4449.1.2.4.1.3" />

 <validity valid-for="3600" />

 <altname-email name="user@something.com" pattern="user@.*" />

 <altname-upn name="user@something.com" pattern="user@.*" />

</key-selection>

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

187

altname-email

Filter user certificates by email in subjectAltName. Use the name option for strict
matching and/or pattern for regex matching.

Supports variable substitutions (described later).

altname-upn

Filter user certificates by UPN in subjectAltName. Use the name option for strict
matching and/or pattern for regex matching.

Supports variable substitutions (described later).

extended-key-usage

Filter user certificates by usage extensions. Use the oid option to specify an extension
in name or OID format. If explicit is set the extended key usage must be in the
certificate. If explicit is not set then certificates without any extended key usage will
be considered matching.

issuer-name

This element can be used to filter the user certificates that will be included in the list
presented to the user. The client-side user certificates can be filtered according to the
issuer name that is compared to the certificate issuers requested or accepted by the
server. The match-server-certificate attribute takes values yes and no. With value
yes, Connection Broker tries matching the user certificate issuer name to the server
certificate issuer name. Option no means that the issuer names are not used as a filter.
By default, the filtering is not done.

The issuer-name is useful when a user has several certificates with different access
rights to the same server, for example for a testing role and for an administrator role. The
Connection Broker chooses the relevant certificates that are applicable on the remote
host, and the user can choose the correct certificate from the short-listed ones.

Supports variable substitutions (described later).

public-key

This element can be used to specify that only plain public keys or only certificates are
tried during public-key authentication. The type attribute can take the values plain
and certificate. The default is to try both plain public keys and certificates.

subject-name

Filter user certificates by subject name. Use the name option for strict matching and/or
pattern for regex matching.

Supports variable substitutions (described later).

validity

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

188 Appendix A Connection Broker Configuration Tools

Filter user certificates by remaining validity period. Only those certificates where
remaining validity exceeds valid-for are matched. valid-for supports time units 's',
'm', 'h' and 'd' (seconds, minutes, hours, and days), for example 3d 18h. When time unit
is unspecified, the duration is assumed to be in seconds.

You may use variable substitutions in altname-email, altname-upn, issuer-name, and
subject-name elements. Specify variable substitutions in %variable_name% format, where
variable_name can be any of the following:

• username: The local user name.

• username-without-domain: The local user name without the domain part.

• userhome: User's home directory

• uid: The user's user ID. Only available on Linux.

• gid: The user's group ID. Only available on Linux.

• group-name: The user's group name. Only available on Linux.

• remote-user: User name specified in the SSH-connection command.

• remote-host: Host name specified in the SSH-connection command.

• remote-port: Port number specified in the SSH-connection command.

• peer-version: The SSH protocol version.

• session-id: The session ID in hex format.

auth-keyboard-interactive

This element specifies that keyboard-interactive methods will be used in authentication.

auth-gssapi

This element specifies that GSSAPI will be used in authentication.

The auth-gssapi element can take the following attributes:

The dll-path attribute specifies where the necessary GSSAPI libraries are located. If this
attribute is not specified, the libraries are searched for in a number of common locations. The
full path to the libraries should be given, for example, "/usr/lib/libkrb5.so,/usr/lib/
libgssapi_krb5.so".

On AIX, the dll-path should include the archive file, if applicable, for example, "<path>/
libgssapi_krb5.a(libgssapi_krb5.a.so)". The archive(shared_object) syntax is not
necessary if the library is a shared object or has been extracted from the shared object.

On Windows, the dll-path attribute is ignored. Tectia Client locates the correct DLL
automatically.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

189

The allow-ticket-forwarding attribute defines whether Tectia Client allows forwarding the
Kerberos ticket over several connections. The attribute can have a value of yes or no. The default
is no.

An example of authentication-methods configuration is shown below:

<authentication-methods>

 <auth-hostbased>

 <local-hostname name="host.example.com" />

 </auth-hostbased>

 <auth-gssapi allow-ticket-forwarding="yes"/>

 <auth-publickey>

 <key-selection policy="interactive-shy">

 <public-key type="plain" />

 </key-selection>

 </auth-publickey>

 <auth-keyboard-interactive />

 <auth-password>

 <password file="/path/filename" />

 </auth-password>

</authentication-methods>

hostbased-default-domain

This element specifies the host's default domain name (as name). This element is used to make sure
the fully qualified domain name (FQDN) of the client host is transmitted to the server when using
host-based user authentication.

The default domain name is appended to the short host name before transmitting it to the server. This
is needed because some platforms (Solaris for instance) use the short format of the host name, and
with that the signature cannot be created.

The allowed formats of the default domain names are: .example.com and example.com (without
the leading dot). For example:

<hostbased-default-domain name=".example.com" />

compression

This element specifies whether the client sends the data compressed (PUT operation). When
activated, compression is applied on-the-fly to all data sent out through the connection and on all
channels in it.

The name of the compression algorithm and the compression level can be given as attributes. The
name attribute can be defined as none (compression not used) or zlib, currently the only supported
algorithm. By default, compression is not used.

For zlib compression, the level attribute can be given an integer from 0 to 9. The default compression
level is 6, when compression is activated but no level is given (or level is set to 0).

Example: to activate maximum level compression of sent data, make the following setting:

<compression name="zlib" level="9" />

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

190 Appendix A Connection Broker Configuration Tools

Compression can also be activated per connection with command line tools. For information, see the
sshg3(1), sftpg3(1) and scpg3(1) man pages.

Note that this compression setting does not affect received data (GET operations), but their
compression is defined on the Secure Shell server. Tectia Server always uses compression level 6.

proxy

This element defines rules for HTTP proxy or SOCKS servers the client will use for connections. It
has a single attribute: ruleset.

The format of the attribute value is a sequence of rules delimited by semicolons (;). Each rule has
a format that resembles the URL format. In a rule, the connection type is given first. The type can
be direct, socks, socks4, socks5, or http-connect (socks is a synonym for socks4). This is
followed by the server address and port. If the port is not given, the default ports are used: 1080 for
SOCKS and 80 for HTTP.

After the address, zero or more conditions delimited by commas (,) are given. The conditions can
specify IP addresses or DNS names.

direct:///[cond[,cond]...];

socks://server/[cond[,cond]...];

socks4://server/[cond[,cond]...];

socks5://server/[cond[,cond]...];

http-connect://server/[cond[,cond]...]

The IP address/port conditions have an address pattern and an optional port range:

ip_pattern[:port_range]

The ip_pattern may have one of the following forms:

• a single IP address x.x.x.x

• an IP address range of the form x.x.x.x-y.y.y.y

• an IP sub-network mask of the form x.x.x.x/y

The DNS name conditions consist of a host name which may be a regular expression containing the
characters "*" and "?" and a port range:

name_pattern[:port_range]

An example proxy element is shown below. It causes the server to access the loopback address and
the ssh.com domain directly, access *.example with HTTP CONNECT, and all other destinations
with SOCKS4.

<proxy ruleset="direct:///127.0.0.0/8,*.ssh.com;

 http-connect://http-proxy.ssh.com:8080/*.example;

 socks://fw.ssh.com:1080/" />

idle-timeout

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

191

This element specifies how long idle time (after all connection channels are closed) is allowed for
a connection before automatically closing the connection. The time is given in seconds. The type
is always connection.

The default setting is 5 seconds. Setting a longer time allows the connection to the server to remain
open even after a session (for example, sshg3) is closed. During this time, a new session to the server
can be initiated without re-authentication. Setting the time to 0 (zero) terminates the connection
immediately when the last channel to the server is closed.

<idle-timeout time="5" />

tcp-connect-timeout

This element specifies a timeout for the TCP connection. When this setting is made, connection
attempts to a Secure Shell server are stopped after the defined time if the remote host is down or
unreachable. This timeout overrides the default system TCP timeout, and this timeout setting can
be overridden by defining a tcp-connect-timeout setting per connection profile (in the profiles
settings) or per connection (on command line).

The time is given in seconds. The factory default is 5 seconds. Value 0 (zero) disables this feature
and the default system TCP timeout will be used.

<tcp-connect-timeout time="5" />

keepalive-interval

This element specifies an interval for sending keepalive messages to the Secure Shell server. The time
value is given in seconds. The default setting is 0, meaning that the keepalive messages are disabled.

<keepalive-interval time="0" />

exclusive-connection

The exclusive-connection element can be used to specify that a new connection is opened for
each new channel. This setting takes one attribute enable, with value yes or no. The default is no,
meaning that open connections are reused for new channels requested by a client.

server-banners

This element defines whether the server banner message file (if it exists) is visible to the user before
login. The word yes or no is given as the value of the visible attribute. The default is yes.

To eliminate server banners:

<server-banners visible="no" />

forwards

This element contains forward elements that define whether X11 or agent forwarding (tunneling)
are allowed on the client side.

forward

This element defines X11 or agent forwarding settings.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

192 Appendix A Connection Broker Configuration Tools

The type attribute defines the forwarding type (either x11 or agent). The state attribute sets
the forwarding on, off, or denied. If the forwarding is set as denied, the user cannot enable
it on the command-line.

An example forward configuration, which denies X11 forwarding and allows agent forwarding
globally, is shown below:

<forwards>

 <forward type="x11" state="denied" />

 <forward type="agent" state="on" />

</forwards>

For more information on using X11 and agent forwarding, see Section 6.3 and Section 6.4.

extended

This element is reserved for future use.

remote-environment

This element contains environment elements which define the environment variables to be passed to
the server from the client side. The environment variables are then set on the server when requesting
a command, shell or subsystem.

Note that the server can restrict the setting of environment variables.

environment

This element defines the name and value of the environment variables, and whether the
Connection Broker should process the value. Possible attributes are name, value, and format.

An example remote environment configuration:

<remote-environment>

 <environment name="FOO" value="bar" />

 <environment name="QUX" value="%Ubaz" format="yes" />

 <environment name="ZAPPA" value="%Ubaz" />

</remote-environment>

You can use %U in the value to indicate a user name. When format="yes" is also defined, the
Connection Broker processes the %U into the actual user name before sending it to the server.

Let's assume the user name is joedoe in this example. The example configuration results in the
following environment variables on the server side, provided that the server allows setting the
environment variables:

FOO=bar

QUX=joedoebaz

ZAPPA=%Ubaz

You can override the remote environment settings made in the configuration file if you use the sshg3
command with the following arguments on the command-line client: --remote-environment or --
remote-environment-format

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

193

For information on the command-line options, see sshg3(1).

server-authentication-methods

This server-authentication-methods element can be used to force the Connection Broker to use
only certain methods in server authentication. This element can contain auth-server-publickey
and auth-server-certificate elements (one of each). The order of these elements is free.

If only auth-server-certificate is specified, server certificate is needed. If no server certificate
is received, connection fails.

If only auth-server-publickey is specified, (plain) server public key is needed. If no server public
key is received, connection fails.

If both auth-server-certificate and auth-server-publickey are specified, server certificate
is used if present. Otherwise server public key is used.

auth-server-certificate

The auth-server-certificate element specifies that certificates are used for server
authentication.

auth-server-publickey

The auth-server-publickey element specifies that public host keys are used for server
authentication.

Note

The host key policy settings have changed in version 6.1.4 and are now defined in the
auth-server-publickey element.

The element takes attribute policy that defines how unknown server host keys are handled. It
can have the following values:

• strict: Connect to the server only if the host key is found from the host key store and matches.

If the policy is set to strict, the Connection Broker never adds host keys to the user's .ssh2/
hostkeys directory upon connection, and refuses to connect to hosts whose key has changed.
This provides maximum protection against man-in-the-middle attacks. However, it also means
you must always obtain host keys via out-of-band means, which can be troublesome if you
frequently connect to new hosts.

• ask (default): If the server host key is not found from the host key store, the user will be asked
if he wants to accept the host key. If the host key has changed, the user is warned about it and
asked how to proceed. If the client application is not able to ask the user (for example, sftpg3
in batch mode, -B), the connection will be disconnected.

• trust-on-first-use or tofu: If the server host key is not found, it is stored to the user's
.ssh2/hostkeys directory. If the host key has changed, the connection will be disconnected.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

194 Appendix A Connection Broker Configuration Tools

• advisory: Use of this setting effectively disables server authentication, which makes the
connection vulnerable to active attackers.

If the server host key is not found in the host key store, it will be added to the user's .ssh2/
hostkeys directory without user interaction. If the host key has changed, the connection will
be continued without user interaction. The incident will be audited if logging is enabled.

When the policy is set to advisory, the keys from new hosts are automatically accepted and
stored to the host key database without prompting acceptance from the user. However, changed
host keys (from hosts whose keys are already in the database) are not stored, but they are
accepted for that connection only.

This setting should be used only if logging is enabled for the Connection Broker.

Caution

Consider carefully before setting the policy to advisory. Disabling the host-key
checks makes you vulnerable to man-in-the-middle attacks.

In policy modes other than strict, if logging is enabled for the Connection Broker, Tectia Client
will log information about changed and new host public keys with their fingerprints in the syslog
(on Unix) or Event Viewer (on Windows).

Note

When FTP-SFTP conversion is used, accepting the host key cannot be prompted from
the user. Either the policy must be set to tofu or the host keys of the Secure Shell
tunneling and SFTP servers must be obtained beforehand and stored based on the IP
addresses of the servers.

If the policy attribute is not defined, the host key policy is interpreted based on the values of the
old strict-host-key-checking, host-key-always-ask, and accept-unknown-host-keys
options as shown in Table A.2 below.

Note

In version 6.1.4 and later, the host key policy setting in the user-specific configuration
file always takes precedence over the setting in the global configuration file.

Table A.2. Interpretation of old host key policy (Tectia Client 5.0.0-6.1.3) to
new host key policy (Tectia Client 6.1.4 and later)

strict-host-key-
checking

accept-unknown-
host-keys

host-key-always-ask Policy

- - - ask (default)

enabled - - strict

enabled enabled - strict

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

195

strict-host-key-
checking

accept-unknown-
host-keys

host-key-always-ask Policy

enabled enabled enabled ask

enabled - enabled ask

- enabled - trust on first use

- enabled enabled ask

- - enabled ask

authentication-method

The server-authentication-methods/authentication-method element specifies an
authentication method name. This element is included for backwards compatibility. Use the
auth-server-* elements instead.

<server-authentication-methods>

 <authentication-method name="publickey" />

 <authentication-method name="certificate" />

</server-authentication-methods>

An example server-authentication-methods element is shown below:

<server-authentication-methods>

 <auth-server-publickey policy="ask" />

 <auth-server-certificate />

</server-authentication-methods>

authentication-success-message

This setting defines whether the AuthenticationSuccessMsg message is shown. The
authentication-success-message element takes the attributes enable and delay.

Enable can be either yes or no. The default is yes, meaning that the messages are output and logged.

Delay takes a numerical value, which corresponds to how many seconds the authentication success
message is shown. The default value is 2. When set to 0,the message is only logged, not shown.

disconnect-message

Message that displays as you disconnect. The value of the disconnect message is a string. The message
may contain any number of the following substitution variables:

• time: Time of disconnect.

• random: 16 random hexadecimal digits.

• random4: 4 random hexadecimal digits.

• random8: 8 random hexadecimal digits.

• random16: Same as random.

• pid: Process id of sshg3.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

196 Appendix A Connection Broker Configuration Tools

• broker_pid: Broker process id.

• conn_id: Connection id.

• session_id: Session id.

• target_host: Target server name.

• target_port: Target server port.

If any of the random variables are used in a disconnect message, the random values are displayed to
the user before authentication successful message. If the values before the connection and after the
disconnect differ, somebody may be spoofing your connection.

Disconnect message is turned off by default.

keyboard-interactive

This setting contains the attribute prefix, which takes a string value. The prefix value will show
before of the keyboard-interactive prompt when set. The prefix attribute's value can take the following
substitution variables:

• time

• host

• port

• user

• connid

The default value for the prefix is ${host}>.

sftpg3-mode

This setting defines how the sftpg3 client behaves when transferring files. The sftpg3-mode element
takes attribute compatibility-mode with the following values:

• tectia (the default) - sftpg3 fransfers files recursively, meaning that files from the current
directory and all its subdirectories are transferred.

• ftp - the get/put commands are executed as sget/sput meaning that they transfer a single file; and
commands mget/mput have recursion depth set to 1 meaning that they only transfer files from the
specified directory, not from subdirectories.

• openssh - commands get/put/mget/mput behave alike, and the recursion depth is set to 1, meaning
that only files from the specified directory are transferred, not from subdirectories.

The recursion depth can be overridden by using the sftpg3 client's commands get/put/mget/mput
with command-line option --max-depth="LEVEL". For more information, see sftpg3(1).

terminal-selection

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

197

This element defines how the Tectia terminal behaves when the user selects text with double-clicks.
The element takes one attribute: selection-type, whose value can be:

select-words - double-clicking selects one word at a time, space and all punctuation characters are
used as delimiters. This is the default.

select-paths - selects strings of characters between spaces, meaning a selection is extended over
characters \/.-_, so that for example a path to a file can be selected by double-clicking anywhere
in the path.

terminal-bell

This element defines whether Tectia terminal repeats audible notifications from the destination server.
This option is only applied to connections with Unix servers. The element takes one attribute, bell-
style, whose value can be:

none - no audible notifications are used

pc-speaker - the user's PC speakers beep when an audible notification is indicated by the destination
server

system-default - the Tectia terminal sounds the default alerts defined in the system on the
destination server. This is the default.

close-window-on-disconnect

This element defines that also the Tectia terminal window is to be closed while disconnecting from a
server session by pressing CTRL+D. The element takes one attribute, enable, whose value can be
yes or no. The default is no meaning that CTRL+D closes only the server connection but the Tectia
terminal window remains open.

quiet-mode

This setting defines whether the command line clients should suppress warnings, error messages and
authentication success messages. The quiet-mode element takes attribute enable with value yes or
no. The default is no, meaning that the errors and messages are output and logged.

The quiet-mode element affects command line tools scpg3, sshg3, and sftpg3. Enabling the quiet
mode here with setting quiet-mode enable="yes" is the same as running these clients with option
-q. Note that the -q command line parameter will take priority over the quiet-mode element set in
this configuration file.

checksum

The checksum element can be used to define a default setting for comparing checksums or checkpoint
to determine the point in the existing destination file where the file transfer can be resumed. With
this option SHA-1 or SHA-2 checksums can be used instead of MD5 or checksum forced also on
small files. By default checksums are not checked for files smaller than default buffer size 32kB.

The checksum element takes attribute type, whose value can be:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

198 Appendix A Connection Broker Configuration Tools

yes|YES - checksums are checked on files larger than 32kB. This is the default value (uses SHA1
checksums in FIPS mode, MD5 checksums otherwise).

no|NO - checksums are not used.

md5|MD5 - MD5 checksums are checked on files larger than 32kB. When the --fips parameter is
set with the command line clients scpg3 and sftpg3, this hash is not used instead "Warning: MD5 is
not FIPS certified -> switching to SHA1." is logged.

sha1|SHA1 - SHA1 checksums are checked on files larger than 32kB. When the --fips parameter
is set with the command line clients scpg3 and sftpg3, this hash is used.

sha256|SHA256 - SHA256 checksums are checked on files larger than buffer size.

sha512|SHA512 - SHA512 checksums are checked on files larger than buffer size.

md5-force|MD5-FORCE - MD5 checksums are forced on all files, except when the --fips parameter
is set with the command line tools scpg3 and sftpg3.

sha1-force|SHA1-FORCE - SHA1 checksums are forced on all files.

sha256-force|SHA256-FORCE - SHA256 checksums are forced on all files.

sha512-force|SHA512-FORCE - SHA512 checksums are forced on all files.

checkpoint|CHECKPOINT - checkpointing is forced on large files that are transferred one by one.

Note

If the Connection Broker is started in FIPS mode and the md5 attribute is defined in the
configuration file, but scpg3 or sftpg3 are not started with the --fips parameter or system-
wide FIPSMODE is not set, then md5 is used.

Note that checksums can also be defined with the command line clients scpg3 and sftpg3, or with
environment variables. The order of priority of the three checksum settings (in case they are different)
is as follows, the later one always overwrites the previous value:

• checksum setting in the configuration file

• SSH_SFTP_CHECKSUM_MODE environment variable

• Command line arguments

address-family

The address-family element defines the IP address family. Give the address family as the value
of the type attribute. Tectia Client will operate using IPv4 (inet) addressing, IPv6 (inet6), or both
(any). The default value for type is any.

The profiles Element

The profiles element defines the connection profiles for connecting to the specified servers. Element
profiles can contain multiple profile elements. Typically, each profile defines the connection rules

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

199

to one server. A generic profile, specifying for example required algorithms, can be used with the sshg3,
scpg3 or sftpg3 command-line option --template-profile when connecting to servers. The settings in
the profile element override the default connection settings.

When a profile is used for the connection, the settings in the profile override the default settings. See the
section called “The default-settings Element”.

profile

The profile element defines a connection profile. It has the following attributes: id, name, host,
port, protocol, host-type, connect-on-startup, user, and gateway-profile.

The profile id must be a unique identifier that does not change during the lifetime of the profile.

An additional name can be given to the profile. This is a free-form text string. The name can be used
for connecting with the profile on the command line, so define a unique name for each profile.

The host attribute defines the address of the Secure Shell server host and it is a mandatory setting.
The address can be either an IP address or a domain name. The value host="*" can be used to prompt
the user to enter the host address when starting the session.

The port is a mandatory setting. It defines the port number of the Secure Shell server listener. The
default port is 22.

The protocol is a mandatory setting. It defines the used communications protocol. Currently the
only allowed value is secsh2.

If you want to make the connection specified by the profile automatically when the Connection Broker
is started, set the value of the connect-on-startup attribute to yes. In this case, give also the user
attribute (the user name the connection is made with). You also need to set up some form of non-
interactive authentication for the connection.

The host-type attribute sets the server type for ASCII (text) file transfer. This specifies the line
break convention that is used for ASCII files. The default value is default, meaning that the line
break convention is determined by the local platform. If the client is running on Windows, Windows
compatible line breaks (CR + LF, '\r\n') are used. If the client is running on any other platform,
Unix compatible line breaks (LF, '\n') are used. Other possible values for host-type are windows
(for Windows remote host) and unix (for Unix remote host). Define the value if you are using any
other server than Tectia Server.

The user attribute specifies the user name for opening the connection. The value "%USERNAME%" can
be used to apply the user name of the currently logged in user. The value user="*" can be used to
prompt the user to enter the user name when logging in. When the user attribute is not defined, the
user name defined in the default connection settings will be used.

The gateway-profile attribute can be used to create nested tunnels. The tunnels defined under the
local-tunnel element of the profile, and the tunnels defined under filter-engine and static-
tunnels that refer to the profile can be nested. The profile name through which the connection is
made is given as the value of the attribute. The first tunnel is created using the gateway host profile
and from there the second tunnel is created to the host defined in this profile.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

200 Appendix A Connection Broker Configuration Tools

hostkey

This element gives the path to the remote server host public key file as a value of the file
attribute.

Alternatively, the public key can be included as a base64-encoded ASCII block.

ciphers

This element defines the ciphers used with this profile. See ciphers for details.

macs

This element defines the MACs used with this profile. See macs for details.

kexs

This element defines the KEXs used with this profile. See kexs for details.

hostkey-algorithms

This element defines the hostkey signature algorithms used with this profile. See hostkey-
algorithms for details.

rekey

This element defines the rekeying settings used with this profile. See rekey for details.

authentication-methods

This element defines the authentication methods used with this profile. See authentication-
methods for details.

user-identities

This element specifies the identities used in user public-key authentication. In contrast to the
key-stores element that specifies all the keys that are available for the Connection Broker, this
element can be used to control the keys that are attempted in authentication when this connection
profile is used and to specify the order in which they are attempted.

The user-identities element can contain multiple identity elements. When multiple
identity elements are used, they are tried out in the order they are listed.

identity

The identity element has the following attributes: file, hash, identity-file, id, and
data.

The file attribute specifies the path to the public-key file (primarily) or to a certificate.
Enter the full path and file name as the value.

The hash attribute is used to enter the hash of the public key that will be used to identify
the related private key. The key must be available for the Connection Broker The public

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

201

key hashes of the available keys can be listed with the ssh-broker-ctl tool. See also ssh-
broker-ctl(1).

The identity-file attribute is reserved for future use.

The id attribute is reserved for future use.

The data attribute is reserved for future use.

An example user-identities element is shown below:

<user-identities>

 <identity file="$HOME/user/.ssh2/id_rsa_3072_a" />

 <identity file="C:\%username-without-domain%\private_keys\id_rsa_4096_a" />

 <identity hash="#a8edd3845005931aaa658b5573609e7d31e23afd" />

</user-identities>

compression

This element defines the compression settings used with this profile. See compression for
details.

proxy

This element defines the HTTP proxy and SOCKS server settings used with this profile. See
proxy for details.

If gateway-profile has been defined for this profile, the proxy setting is ignored and the default
proxy setting or the proxy setting of the gateway profile is used instead.

idle-timeout

This element defines the idle timeout settings used with this profile. See idle-timeout for details.

tcp-connect-timeout

This element defines the TCP connection timeout for this profile. The timeout is used to
terminate connection attempts to Secure Shell servers that are down or unreachable. The default
value is 5 seconds. See tcp-connect-timeout for details.

keepalive-interval

This element defines an interval for sending keepalive messages to the Secure Shell server. The
setting applies to this profile. The default value is 0, meaning that no keepalive messages are
sent. See keepalive-interval for details.

exclusive-connection

This element defines whether a new connection is opened for each new channel when a
connection is made with this profile. This setting takes one attribute enable, with value yes or
no. The default is no, meaning that open connections are reused for new channels requested by
a client. See also exclusive-connection .

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

202 Appendix A Connection Broker Configuration Tools

server-banners

This element defines the server banner setting used with this profile. See server-banners for
details.

forwards

This element defines the forwards allowed with this profile. See forwards for details.

tunnels

The tunnels element defines the tunnels that are opened when a connection with this profile is
made. The element can contain multiple local-tunnel and remote-tunnel elements.

local-tunnel

This element defines a local tunnel (port forwarding) that is opened automatically when a
connection is made with the connection profile. It has five attributes: type, listen-port,
listen-address, dst-host, dst-port, and allow-relay.

The type attribute defines the type of the tunnel. This can be tcp (default, no special
processing), ftp (temporary forwarding is created for FTP data channels, effectively
securing the whole FTP session), or socks (Tectia Client will act as a SOCKS server for
other applications, creating forwards as requested by the SOCKS transaction).

The listen-port attribute defines the listener port number on the local client.

The listen-address attribute can be used to define which network interfaces on the client
should be listened. Its value can be an IP address belonging to an interface on the local
host. Value 0.0.0.0 listens to all interfaces. The default is 127.0.0.1 (localhost loopback
address on the client). Setting any other value requires setting allow-relay="yes".

For address-family option inet6, the default listen address is ::1. To listen on
all interfaces, specify ::. For address-family option any, the listen address is both
127.0.0.1 and ::1 by default; to listen on all interfaces, specify ::.

Whenever a connection is made to the specified listener, the connection is tunneled over
Secure Shell to the remote server and another connection is made from the server to a
specified destination host and port (dst-host, dst-port). The connection from the server
onwards will not be secure, it is a normal TCP connection.

The dst-host and dst-port attributes define the destination host address and port. The
value of dst-host can be either an IP address or a domain name. The default is 127.0.0.1
(localhost = server host).

The allow-relay attribute defines whether connections to the listened port are allowed
from outside the client host. The default is no. If you use allow-relay="yes", it will check
also the listen-address setting.

For more information on using local tunnels, see Section 6.1.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

203

remote-tunnel

This element defines a remote tunnel (port forwarding) that is opened automatically when a
connection is made with the connection profile. It has four attributes: type, listen-port,
listen-address, dst-host, dst-port, and allow-relay.

The type attribute defines the type of the tunnel. This can be either tcp (default, no special
processing) or ftp (temporary forwarding is created for FTP data channels, effectively
securing the FTP session between the client and server).

The listen-port attribute defines the listener port number on the remote server.

The listen-address attribute can be used to define which network interfaces on the server
should be listened. Its value can be an IP address belonging to an interface on the server
host. Value 0.0.0.0 listens to all interfaces. The default is 127.0.0.1 (localhost loopback
address on the server). Setting any other value requires that allow-relay="yes".

For address-family option inet6, the default listen address is ::1. To listen on
all interfaces, specify ::. For address-family option any, the listen address is both
127.0.0.1 and ::1 by default; to listen on all interfaces, specify ::.

Whenever a connection is made to this listener, the connection is tunneled over Secure Shell
to the local client and another connection is made from the client to a specified destination
host and port (dst-host, dst-port). The connection from the client onwards will not be
secure, it is a normal TCP connection.

The dst-host and dst-port attributes define the destination host address and port. The
value of dst-host can be either an IP address or a domain name. The default is 127.0.0.1
(localhost = client host).

The allow-relay attribute defines whether connections to the listener port are allowed
from outside the server host. The default is no.

For more information on using remote tunnels, see Section 6.2.

extended

This element is reserved for future use.

remote-environment

This element defines the remote environment settings used with this profile. Within the remote-
environment element, define an environment element for each environment variable to be
passed to the server. See remote-environment for details.

server-authentication-methods

This element defines the server authentication methods allowed with this profile. See server-
authentication-methods for details.

password

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

204 Appendix A Connection Broker Configuration Tools

This element can be used to specify a user password that the client will send as a response to
password authentication.

The password can be given directly in the string attribute, or a path to a file containing the
password can be given in the file attribute, or a path to a program or a script that outputs the
password can be given in the command attribute.

When using the command option to refer to a shell script, make sure the script also defines the
user's shell, and outputs the actual password. Otherwise the executed program fails, because it
does not know what shell to use for the shell script. For example, if the password string is defined
in a file named my_password.txt, and you want to use the bash shell, include these lines in
the script:

#!/usr/bash

cat /full/pathname/to/my_password.txt

Caution

If the password is given using this option, it is extremely important that the ssh-
broker-config.xml file, the password file, or the program are not accessible by
anyone else than the intended user.

Note

Any password given with the command-line options will override this setting.

An example connection profile is shown below:

<profile name="rock"

 id="id1"

 host="rock.example.com"

 port="22"

 connect-on-startup="no"

 user="doct">

 <hostkey file="key_22_rock.pub">

 </hostkey>

 <authentication-methods>

 <auth-publickey />

 <auth-password />

 </authentication-methods>

 <server-authentication-methods>

 <auth-server-publickey policy="strict" />

 </server-authentication-methods>

 <server-banners visible="yes" />

 <forwards>

 <forward type="agent" state="on" />

 <forward type="x11" state="on" />

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

205

 </forwards>

 <tunnels>

 <local-tunnel type="tcp"

 listen-port="143"

 dst-host="imap.example.com"

 dst-port="143"

 allow-relay="no" />

 </tunnels>

 <remote-environment>

 <environment name="FOO" value="bar" />

 <environment name="QUX" value="%Ubaz" format="yes" />

 <environment name="ZAPPA" value="%Ubaz" />

 </remote-environment>

</profile>

The static-tunnels Element

The static-tunnels setting is used to configure the behavior of the automatic tunnels. You can create
listeners for local tunnels automatically when the Connection Broker starts up. The actual tunnel is formed
the first time a connection is made to the listener port. If the connection to the server is not open at that
time, it will be opened automatically as well.

The static-tunnels element can contain any number of tunnel elements.

tunnel

The tunnel element specifies a static tunnel. It has the following attributes: type, listen-port,
listen-address, dst-host, dst-port, allow-relay, and profile.

The type attribute defines the type of the tunnel. This can be either tcp or ftp.

• tcp specifies a listener for generic TCP tunneling

• ftp specifies a listener for FTP tunneling (also the FTP data channels are tunneled)

The listen-port attribute defines the listener port number on the local client.

The listen-address attribute can be used to define which network interfaces on the client should
be listened. Its value can be an IP address belonging to an interface on the local host. Value 0.0.0.0
listens to all interfaces. The default is 127.0.0.1 (localhost loopback address on the client). Setting
any other value requires that allow-relay="yes".

For address-family option inet6, the default listen address is ::1. To listen on all interfaces,
specify ::. For address-family option any, the listen address is both 127.0.0.1 and ::1 by default;
to listen on all interfaces, specify ::.

The dst-host and dst-port attributes define the destination host address and port. The value of
dst-host can be either an IP address or a domain name. The default is 127.0.0.1 (localhost =
server host).

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

206 Appendix A Connection Broker Configuration Tools

The allow-relay attribute defines whether connections to the listened port are allowed from outside
the client host. The default is no.

The profile attribute specifies the connection profile ID that is used for the tunnel.

<static-tunnels>

 <tunnel type="tcp"

 listen-address="127.0.0.1"

 listen-port="9000"

 dst-host="st.example.com"

 dst-port="9000"

 allow-relay="no"

 profile="id1" />

</static-tunnels>

The gui Element

The gui element is used to adjust the Tectia terminal GUI settings. The gui element takes the following
attributes: hide-tray-icon, show-exit-button, and show-admin. All of these must have yes or no
as the value.

The hide-tray-icon attribute controls whether the Tectia icon is displayed in the notification area of
the Windows taskbar (also known as the system tray). The default is no (the tray icon is displayed).

The show-exit-button attribute controls whether the Exit command is displayed in the shortcut menu
of the Tectia icon. The default is yes.

The show-admin attribute defines whether the Configuration command is displayed in the Tectia icon
shortcut menu. The default is yes. If the button is not displayed, the Tectia Connections Configuration
GUI can be started by running ssh-tectia-configuration.exe, located by default in directory
"<INSTALLDIR>\SSH Tectia Broker".

<gui hide-tray-icon="no"

 show-exit-button="yes"

 show-admin="yes"

The filter-engine Element

The filter-engine element defines the filter rules for transparent TCP tunneling.

Note

The filter-engine element is read from the global configuration file, if such a file is available.
Only when the global configuration file does not contain the filter-engine element, this
element is read from the user-specific configuration file.

On Unix, the global configuration is stored as /etc/ssh2/ssh-broker-config.xml, and
on Windows as "<INSTALLDIR>\SSH Tectia Broker\ssh-broker-config.xml", where
<INSTALLDIR> indicates the default Tectia installation directory on Windows (see Section 1.1.2).

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

207

For configuration examples, see these sample files:

• On Unix: etc/ssh2/ssh-broker-config-example-capture.xml and etc/ssh2/ssh-broker-
config-example.xml

• On Windows: "<INSTALLDIR>\SSH Tectia Broker\ssh-broker-config-example.xml"

The top level element is filter-engine. It has the following attributes: capture-enabled, ip-
generate-start, ip6-generate-start and ftp-filter-at-signs (currently unused).

capture-enabled attribute defines whether transparent TCP tunneling is active and capturing application
connections for tunneling. The default is yes.

The ip-generate-start attribute defines the start address of the pseudo IPv4 address space. Pseudo IPs
are generated by the Connection Broker when applications do the DNS query through the SSH connection
capture component.

The ip6-generate-start attribute is similar to ip-generate-start, but it defines the start address of
the pseudo IPv6 address space.

Note

Under the filter-engine element there can be any amount of rule elements. The order of
the elements is important, because the filter engine uses the elements in the order they were
specified in the configuration file.

rule

The rule element specifies how a filtered connection will be handled. It has the following attributes:
application, host, ip-address, pseudo-ip, ports, action, profile-id, destination,
destination-port, hostname-from-app, username-from-app, fallback-to-plain.

The application attribute can be used to specify one or more applications to which the rule is
applied. This can be a regular expression using the egrep syntax. For information on the syntax,
see Appendix C.

The host attribute specifies a target host name. It can be a regular expression using the egrep syntax.

The ip-address attribute specifies the target host IP address. It can be a regular expression using the
egrep syntax. In this case the Connection Broker does the string matching with the assumption that
the IP address is written in its canonical form. If both the host name and the IP address are defined,
the host attribute takes precedence and the ip-address attribute is ignored.

The pseudo-ip setting has the following effects when the ip-address is left empty and the host
matches:

• When pseudo-ip="yes", the Connection Broker assigns a pseudo IP address for the target host
and Tectia Server resolves the real IP address. The pseudo IP addresses should be used when
accessing an internal network from the outside, because name resolution for the machines in the
internal network is not available from the outside.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

208 Appendix A Connection Broker Configuration Tools

• When pseudo-ip="no", a normal DNS query is made for the target host name. The default value
is no.

pseudo-ip is always used on Windows regardless of this setting's value.

The ports attribute can be a single port or a range. A range is specified with a hyphen between two
integers (for example "21-25").

Note

For FTP-SFTP conversion, always specify the port unambiguously if fallback mode is set.
Do not use an asterisk (*), because it causes problems in passive mode file transfer when
connected to a plaintext FTP server.

The action attribute specifies the action to be done when a filter matches. Its value can be DIRECT,
BLOCK, TUNNEL, FTP-TUNNEL, or FTP-PROXY.

• DIRECT causes the connection to be made directly as plaintext without tunneling or FTP-SFTP
conversion.

• BLOCK causes the connection to be blocked.

• FTP-TUNNEL activates transparent FTP tunneling

• TUNNEL activates transparent TCP tunneling

• FTP-PROXY causes the FTP-SFTP conversion to start and a connection to be made to the Secure
Shell SFTP server.

The profile-id attribute can be used to specify the connection profile that defines the connection
settings.

If the profile-id attribute is left empty and hostname-from-app="yes" is specified, the Secure
Shell connection is made to the server specified by the client application using default settings. If a
profile-id is specified and also hostname-from-app="yes" is specified, or the referred profile
has * (an asterisk) or empty as the value of the host attribute, the Secure Shell connection is made
to the server specified by the client application using the profile settings.

The destination and destination-port attributes can be used to define a static destination
address and port number that will be used as the end point of the connection instead of the original
address and port given by the application.

The hostname-from-app attribute defines whether the Connection Broker should extract the Secure
Shell server's host name from data sent by the application, or use a Secure Shell server defined by the
connection profile in profile-id. The value is yes or no, and the default is no.

When hostname-from-app="no", the tunnel will be created to the Secure Shell server specified in
the connection profile referred in the profile-id attribute. Note that with transparent tunneling, the
connection from the Secure Shell server to the final destination application will be unsecured and

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

209

in plaintext. To achieve end-to-end security, the Secure Shell server should reside on the same host
as the application.

When hostname-from-app="yes", the tunnel will be created to the destination server specified by
the application. This setting can be used with both FTP and TCP tunneling and FTP-SFTP conversion.
When using hostname-from-app="yes", it is no longer necessary to create a separate connection
profile for each destination host. Note that this requires that a Secure Shell server is installed to each
destination server (or that fallback-to-plain is enabled to allow direct connections to those servers
that do not have Secure Shell installed).

The username-from-app attribute defines whether the FTP tunneling or FTP-SFTP conversion
extracts the user name from data sent by the FTP application. The value is yes or no. The default is no.

When username-from-app="yes", the user name received from the FTP client application is used.
This setting can be used with FTP tunneling and FTP-SFTP conversion. This setting will override
any user name settings made in a related connection profile. When username-from-app="no", the
user name is taken from the connection profile defined with the profile-id attribute.

The fallback-to-plain attribute can be used to define whether a direct (unsecured) connection is
used if creating the tunnel fails or the connection to the Secure Shell server fails. The default value is
no. Normally, when the secured connection fails when applying a filter rule, the Connection Broker
will return an error about not being able to establish a connection. In FTP-SFTP conversion on Unix,
fallback-to-plain requires that option -F is used with the ssh-capture command.

Note

Do not enable the fallback-to-plain and pseudo-ip options at the same time. If they
both are enabled, and a secure connection fails, the application will try a direct connection
with the pseudo IP, which will not work.

The windows-capture Element

The supported windows-capture options and their default values:

<windows-capture

 trusted-user = "nt authority\system"

 hostname-filtering= "always"

 trusted-broker-start-on-boot = "yes"

 trusted-broker-enabled = "yes"

 trusted-broker-offline-action = "direct"

 user-broker-enabled = "yes"

 user-broker-offline-action = "direct"/>

trusted-user

Defines the user whose broker is treated as the trusted broker. The trusted broker has priority over
user brokers in decicions about tunneling/blocking all the connections on the system.

If you set this to any non service account that has a password, and trusted-broker-start-on-
boot is "yes", you must run ssh-broker-ctl capture-driver reconfig as that user. That user

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

210 Appendix A Connection Broker Configuration Tools

must also be in the Administrators group. Otherwise the trusted broker automatic launch task will
not be updated. Updating any other windows-capture setting will succeed regardless of the user you
are running as, as long as you run it as the Administrator.

If you want auto start with a non-Administrator trusted user, then you must manually edit the
Task Scheduler task TectiaTrustedBroker to have the correct user. After that run ssh-broker-ctl
capture-driver reconfig --force (as any user with Administrator privileges). The trusted broker
will be launched automatically only starting from next boot. If you want to run it immediately, set
the task to Run in the Task Scheduler.

hostname-filtering

Possible values: never, trusted-broker, always

If set to never, hostname filtering will be entirely disabled and filtering rules with a hostname will
never be matched. If set to trusted-broker, only the trusted broker can do hostname filtering. With
always, all users are allowed to do hostname filtering (given that the trusted broker is enabled and
running).

trusted-broker-start-on-boot

If enabled, the trusted broker is launched automatically by the Windows Task Scheduler as the trusted-
user. This broker always has a special socket address capture-trusted-broker.

Administrators must have the permission Log on as a batch job. Otherwise the trusted broker
cannot be started automatically. Log on as a batch job is enabled by default.

trusted-broker-enabled

Enables the usage of the trusted broker feature. If disabled, no broker will be treated as the trusted
broker (see trusted-user).

If the trusted broker is enabled and set up, it will always have the first say on any connection before
any user broker.

trusted-broker-offline-action

The default action for all connections in case the trusted broker enabled is enabled but not running.
Possible values are direct and block.

user-broker-enabled

If enabled, allows any user to filter with their own broker and filtering rules. User brokers can only
filter connections that are run by the same user. Hostname-based filtering is available to user brokers
only if the trusted broker is enabled and running.

user-broker-offline-action

Same as trusted-broker-enabled, but for the user broker.

The logging Element

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

211

The logging element changes the logging settings that define the log event severities and logging facilities.
The element contains one or more log-target and log-events elements.

log-target

This element specifies the log target for auditing. By default, the broker does not log anything. This
element can be used to direct log data to a file or syslog.

The log-target element can have file and type as attributes.

The type attribute specifies the logging facility where the audit data is output to. The value can be
file, syslog or discard.

The file attribute sets the file system path where the audit data is written to. If the type attribute
has syslog or discard set, the file attribute is not allowed.

log-events

This element sets the severity and facility of different logging events. The events have reasonable
default values, which are used if no explicit logging settings are made. This setting allows customizing
the default values.

The element can also contain one or more log-target elements. When defined here, the log-target
element will override the definition given in the logging/log-target.

For the events, facility and severity can be set as attributes. The events itself should be listed
inside the log-events element.

The facility can be normal, daemon, user, auth, local0, local1, local2, local3, local4, local5,
local6, local7, or discard. Setting the facility to discard causes the server to ignore the specified
log events.

On Windows, only the normal and discard facilities are used.

The severity can be informational, notice, warning, error, critical, security-success, or
security-failure.

Any events that are not specifically defined in the configuration file will use the default values. The
defaults can be overridden for all remaining events by giving an empty log-events element after all
other definitions and by setting a severity value for it.

In the names of log events, the characters '*' and '?' can be used as wildcards.

For a complete list of log events, see Appendix D.

An example logging configuration that logs all events, which are programmed to be logged by default,
both to /tmp/foo and to syslog.

<logging>

 <log-target file="/tmp/foo" />

 <log-target type="syslog" />

</logging>

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

212 Appendix A Connection Broker Configuration Tools

An example logging configuration in which events are logged to /tmp/foo, except those whose event
name matches "Key_store_*", which will be discarded.

<logging>

 <log-target file="/tmp/foo" />

 <log-events facility="discard">

 Key_store_*

 </log-events>

</logging>

A.3 Backup of Configuration Files

Before you start upgrades or creating test configurations, make sure you have a backup of the Connection
Broker configuration files where you have made modifications.

The user-specific Connection Broker configuration file is by default located in $HOME/.ssh2/ssh-
broker-config.xml on Unix and in %APPDATA%\SSH\ssh-broker-config.xml on Windows. Each time
the Connection Broker configuration file is saved, a backup (ssh-broker-config.xml.bak) of the old
configuration file is stored in the same directory. In case you need to return to using the backed up file,
copy it back to the original location under the original name.

During Tectia upgrades on Windows, a backup copy is automatically made of the earlier Connection
Broker configuration files and stored in the user-specific directory:

"%APPDATA%\SSH\backup-<version>-<date>"

where

<version> is the Tectia release

<date> is the date of the upgrade.

A.4 Connection Broker Configuration File Quick Reference

This Appendix contains a quick reference to the elements of the Connection Broker configuration file,
ssh-broker-config.xml. The quick reference is divided into four tables:

• Table A.3: The general element

• Table A.4: The default-settings element

• Table A.5: The profiles element

• Table A.6: Other elements (static-tunnels, gui, and logging)

The tables list the available configuration file elements with their attributes, attribute values (with the
default value, if available, marked in bold) and descriptions. The element names in the tables are links
that take you to detailed descriptions of the elements in ssh-broker-config(5).

The element hierarchy is expressed with slashes ('/') between parent and child elements.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

213

Table A.3. ssh-broker-config.xml Quick Reference - the general element

Element Attributes and their values Description

crypto-lib mode = "standard|fips" Cryptographic library mode:
standard or FIPS 140-2 certified.

end-point-identity-check

= "yes|no|ask"

Client will verify server's host name
or IP address against the server host
certificate

default-domain = domain_name Default domain part of the remote
system name

http-proxy-url = HTTP_proxy HTTP proxy for making queries for
certificate validity

socks-server-url =

SOCKS_server

SOCKS server for making queries
for certificate validity

cache-size = [1 to 512]

(default: "300")
Maximum size (MB) of in-memory
cache for certificates and CRLs

max-crl-size = [1 to 512]

(default: "50")
Maximum size (MB) of CRLs
accepted

external-search-timeout

= [1 to 3600]

(default: "60")

Time limit (seconds) for external
HTTP and LDAP searches for
CRLs and certificates

max-ldap-response-length

= [1 to 512] (default: "50")
Maximum size (MB) of LDAP
responses accepted

ldap-idle-timeout = [1 to

3600]

(default: "30")

Idle timeout (seconds) for LDAP
connections

cert-validation

max-path-length = number

(default: "10")
Maximum length of certification
paths when validating certificates

address =

LDAP_server_address

LDAP server address for fetching
CRLs and/or subordinate CA
certificates

cert-validation /
ldap-server

port = port_number

(default: "389")
LDAP server port for fetching CRLs
and/or subordinate CA certificates

url = URL_address OCSP (Online Certificate Status
Protocol) responder service address

cert-validation /
ocsp-responder

validity-period = seconds

(default: "0")
Time period during which new
OCSP queries for the same
certificate are not made (the old
result is used)

url

= LDAP_URL|HTTP_URL|file_URL
Tectia Client periodically
downloads a CRL from this URL

cert-validation /
crl-prefetch

interval = seconds

(default: "3600")
How often the CRL is downloaded

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

214 Appendix A Connection Broker Configuration Tools

Element Attributes and their values Description

cert-validation /
dod-pki

enable = "yes|no" Enforce digital signature in key
usage

name = CA_name Name of the certification authority
(CA) used in server authentication

file = path Path to the X.509 CA certificate file
disable-crls = "yes|no" Disable CRL checking

cert-validation /
ca-certificate

use-expired-crls = seconds

(default: "0")
Time period for using expired CRLs

name = OpenSSH_CA_name Name of the OpenSSH certification
authority (CA) used in server
authentication

cert-validation /
openssh-ca-key

file = path Path to the OpenSSH CA public key
file

type = "mscapi|pkcs11|

software|zos-saf"

Key store typekey-stores /
key-store

init = init_info Key-store-provider-specific
initialization info

directory = path Directory where the user private
keys are stored

passphrase-timeout = seconds

(default: "0")
Time after which the passphrase-
protected private key will time out

key-stores /
user-keys

passphrase-idle-timeout

= seconds

(default: "0")

Time after which the passphrase-
protected private key will time out
unless the user accesses or uses the
key

file = path Location of the identification file
that defines the user keys

base-path = path Directory where the identification
file expects the user private keys to
be stored

passphrase-timeout = seconds

(default: "0")
Time after which the user must
enter the passphrase again

key-stores /
identification

passphrase-idle-timeout

= seconds (default: "0")
Time after which the passphrase
times out if there are no user actions

user-config-directory path = path (default:
"%USER_CONFIG_DIRECTORY%")

Non-default location of user-
specific configuration files

file-access-control
(Unix only)

enable = "yes|no" Enable checking of file access
permissions defined for global and
user-specific configuration files and
private keys files

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

215

Element Attributes and their values Description

protocol-parameters threads = number

(if set to 0, default value is used)
The number of threads the protocol
library uses (fast path dispatcher
threads)

path = path Non-default location of known hosts
file or directory

file = path Location of OpenSSH-style
known_hosts file

directory = path Non-default directory for storing
known host keys

known-hosts

filename-format = "hash|

plain|default"

("default" = "hash")

The format in which new host key
files will be stored

Table A.4. ssh-broker-config.xml Quick Reference - the default-settings
element

Element Attributes and their values Description

user = user_name Default user name to be used when
connecting to remote servers

ciphers / cipher name = cipher_name A cipher that the client requests for
data encryption

macs / mac name = MAC_name A MAC that the client requests for
data integrity verification

kexs / kex name = KEX_name A KEX that the client requests for
the key exchange method

hostkey-algorithms /
hostkey-algorithm

name = hostkey-
algorithm_name

A host key signature algorithm to be
used in server authentication with
host keys or certificates

rekey bytes = number

(default: "1000000000" (1 GB))
Number of transferred bytes after
which key exchange is done again

authentication-methods
/
auth-hostbased

- Host-based authentication will be
used

authentication-methods
/
auth-hostbased /
local-hostname

name = host_name Local host name that is advertised
to the remote server during host-
based authentication

authentication-methods
/
auth-password

- Password authentication will be
used

authentication-methods
/

- Public-key authentication will be
used

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

216 Appendix A Connection Broker Configuration Tools

Element Attributes and their values Description
auth-publickey signature-algorithms

= comma-separated_list
Public-key signature algorithms
used for client authentication

authentication-methods
/ auth-publickey /
key-selection

policy

= "automatic|interactive-shy"

Key selection policy used by the
client when proposing user public
keys to the server

authentication-methods
/ auth-publickey /
key-selection /
public-key

type = "plain|certificate"

(by default, both are tried)
Only plain public keys or only
certificates are tried during public-
key authentication

name

= certificate_issuer_name
Client-side user certificates can be
filtered by comparing this name to
the certificate issuers requested or
accepted by the server

authentication-methods
/ auth-publickey /
key-selection /
issuer-name

match-server-certificate

= "yes|no"

The Connection Broker tries
matching the user certificate issuer
name to the server certificate issuer
name

- GSSAPI will be used in
authentication

dll-path = path

(ignored on Windows)
Location of the necessary GSSAPI
libraries

authentication-methods
/ auth-gssapi

allow-ticket-forwarding

= "yes|no"

Allow forwarding the Kerberos
ticket over several connections

authentication-methods
/ auth-keyboard-
interactive

- Keyboard-interactive methods will
be used in authentication

hostbased-default-
domain

name = domain_name Host's default domain name that is
appended to the short host name
before transmitting it to the server

name = "none|zlib" Compress the data that the client
sends

compression

level = [0 to 9]

(default: "0" (= level 6))
For zlib, compression level.

proxy ruleset = rule_sequence Rules for HTTP proxy or SOCKS
servers the client will use for
connections

type = "connection" Idle timeout is always defined for
connections

idle-timeout

time = seconds

(default: "5")
Idle time (after all connection
channels are closed) allowed for a
connection before automatically
closing the connection

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

217

Element Attributes and their values Description

tcp-connect-timeout time = seconds

(default: "5")
Timeout for TCP connections (after
which connection attempts to a
Secure Shell server are stopped
if the remote host is down or
unreachable)

keepalive-interval time = seconds

(default: "0")
Time interval for sending keepalive
messages to the Secure Shell server

exclusive-connection enable = "yes|no" A new connection is opened for
each new channel

server-banners visible = "yes|no" Show server banner message file (if
it exists) to the user before login

type = "x11|agent" Forwarding typeforwards / forward
state = "on|off|denied" Set forwarding on or off, or deny it
name = env_var_name Name of an environment variable

that is to be passed to the server
from the client side

value = string Value of the environment variable

remote-environment /
environment

format = "yes|no" The Connection Broker processes
Tectia-specific special variables in
value (e.g. %U%)

server-authentication-
methods /
auth-server-certificate

- Use certificates for server
authentication

- Use public host keys for server
authentication

server-authentication-
methods /
auth-server-publickey policy

= "strict|ask|tofu|advisory"

Policy for handling unknown server
host keys

enable = "yes|no" Output and log the
AuthenticationSuccessMsg

message

authentication-success-
message

delay =seconds

(default: "2")
Time for how long authentication
success message is shown

disconnect-message message = string Sets the message that displays when
disconnecting.

keyboard-interactive prefix = string A message shown before of the
keyboard-interactive prompt.

sftpg3-mode compatibility-mode

= "tectia|ftp|openssh"

Behavior of sftpg3 when
transferring files

terminal-selection selection-type

= "select-words|select-paths"

Behavior of the Tectia terminal
when the user selects text with
double-clicks

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

218 Appendix A Connection Broker Configuration Tools

Element Attributes and their values Description

terminal-bell bell-style = "none

|pc-speaker|system-default"

Tectia terminal repeats audible
notifications from destination
(Unix) server

close-window-on-
disconnect

enable = "yes|no" Tectia GUI tab is to be closed while
disconnecting from a server session
by pressing CTRL+D

quiet-mode enable = "yes|no" Make scpg3, sshg3, and sftpg3
suppress warnings, error messages
and authentication success messages

checksum type = "yes|no|md5|sha1|md5-

force|sha1-force|checkpoint"

Default setting for comparing
checksums

address-family type = "any|inet|inet6" IP address family: both, IPv4, or
IPv6

Table A.5. ssh-broker-config.xml Quick Reference - the profiles element

Element Attributes and their values Description

id = ID Unique identifier that does not
change during the lifetime of the
profile

name = string Unique name (free-form text string)
that can be used for connecting with
the profile on the command line

host = IP_address|FQDN
|short_hostname

Secure Shell server host address

port = port_number

(default: "22")
Secure Shell server listener port
number

protocol = "secsh2" The communications protocol used
by the profile

host-type

= "default|windows|unix"

Server type for ASCII (text) file
transfer

connect-on-startup = "yes|no" Connect automatically with the
profile when the Connection Broker
is started

user = user_name User name for opening the
connection

profile

gateway-profile =

profile_name

Create nested tunnels

profile / hostkey file = path Path to the remote server host
public key file

profile / ciphers /
cipher

name = cipher_name A cipher used with this profile

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

219

Element Attributes and their values Description

profile / macs / mac name = MAC_name A MAC used with this profile

profile / kexs / kex name = KEX_name A KEX used with this profile

profile /
hostkey-algorithms /
hostkey-algorithm

name = hostkey-
algorithm_name

Host key signature algorithm used
with this profile

profile / rekey bytes = number

(default: "1000000000" (1 GB))
Number of transferred bytes after
which key exchange is done again
when using this profile

profile /
authentication-methods

Define the authentication methods for this profile using the same child
elements as with default-settings / authentication-methods (see
Table A.4)

file = path Path to the public-key file
(primarily) or to a certificate

hash = hash Hash of the public key that will be
used to identify the related private
key

profile / user-identities
/
identity

identity-file = path Reserved for future use
name = "none|zlib" Compression settings (for the data

that the client sends) used with this
profile

profile / compression

level = [0 to 9]

(default: "0" (= level 6))
For zlib, compression level.

profile / proxy ruleset = rule_sequence Rules for HTTP proxy or SOCKS
servers the client will use for
connections with this profile

type = "connection" Idle timeout is always defined for
connections

profile / idle-timeout

time = seconds

(default: "5")
Idle time (after all connection
channels are closed) allowed for a
connection before automatically
closing the connection opened with
this profile

profile /
tcp-connect-timeout

time = seconds

(default: "5")
Timeout for TCP connections with
this profile: Connection attempts
to a Secure Shell server are stopped
after the defined time if the remote
host is down or unreachable

profile /
keepalive-interval

time = seconds

(default: "0")
Time interval for sending keepalive
messages to the Secure Shell server
with this profile

profile /
exclusive-connection

enable = "yes|no" A new connection is opened for
each new channel with this profile

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

220 Appendix A Connection Broker Configuration Tools

Element Attributes and their values Description

profile /
server-banners

visible = "yes|no" Show server banner message file
(if it exists) to the user before login
with this profile

type = "x11|agent" Forwarding type for this profileprofile / forwards /
forward state = "on|off|denied" Set forwarding on, off, or deny it

(i.e. the user cannot enable it on the
command-line) with this profile

type = "tcp|ftp|socks" Type of the local tunnel that is
opened automatically when a
connection is made with this profile

listen-address = IP_address

(default: 127.0.0.1)
The network interfaces that should
be listened on the client

listen-port = port_number Listener port number on the local
client

dst-host

= IP_address|domain_name

(default: 127.0.0.1)

Destination host address

dst-port = port_number Destination port

profile / tunnels /
local-tunnel

allow-relay = "yes|no" Allow connections to the listened
port from outside the client host

type = "tcp|ftp" Type of the remote tunnel that
is opened automatically when a
connection is made with this profile

listen-address = IP_address

(default: 127.0.0.1)
The network interfaces that should
be listened on the server

listen-port = port_number Listener port number on the remote
server

dst-host

= IP_address|domain_name

(default: 127.0.0.1)

Destination host address

dst-port = port_number Destination port

profile / tunnels /
remote-tunnel

allow-relay = "yes|no" Allow connections to the listener
port from outside the server host

name = env_var_name Name of an environment variable
that is to be passed to the server
from the client side

value = string Value of the environment variable

profile /
remote-environment /
environment

format = "yes|no" The Connection Broker processes
Tectia-specific special variables in
value (e.g. %U%)

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

221

Element Attributes and their values Description

profile / server-
authentication-methods

Define the server authentication methods allowed with this profile
using the same child elements as with default-settings / server-
authentication-methods (see Table A.4)
string = password User password that the client will

send as a response to password
authentication

file = password_file File containing the password

profile / password

command = path Path to a program or script that
outputs the password

Table A.6. ssh-broker-config.xml Quick Reference - the static-tunnels, gui,
and logging elements

Element Attributes and their values Description

type = "tcp|ftp" Type of the static tunnel
listen-address = IP_address

(default: 127.0.0.1)
The network interfaces that should
be listened on the client

listen-port = port_number Listener port number on the local
client

dst-host

= IP_address|domain_name

(default: 127.0.0.1)

Destination host address

dst-port = port_number Destination port
allow-relay = "yes|no" Allow connections to the listened

port from outside the client host

static-tunnels /
tunnel

profile = ID Connection profile ID that is used
for the tunnel

hide-tray-icon = "yes|no" Hide the Tectia icon in the Windows
taskbar notification area

show-exit-button = "yes|no" Show the Exit command in the
Tectia icon's shortcut menu

gui

show-admin = "yes|no" Show the Configuration command
in the Tectia icon's shortcut menu

file = path File where the audit data is written
to

logging / log-target

type = "file|syslog|discard" Logging facility to which audit data
is output

logging / log-events facility = "normal|daemon

|user|auth|local0|local1|

local2

|local3|local4|local5|local6

|local7|discard"

Facility of logging event

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

222 Appendix A Connection Broker Configuration Tools

Element Attributes and their values Description
(On Windows:
facility = "normal|discard")
severity = "informational

|notice|warning|error|

critical|security-success

|security-failure"

Severity of logging event

logging / log-events /
log-target

The same as logging / log-target

A.5 PrivX Desktop Shortcut Menu (Windows and Linux)

When Tectia Client (or Connection Broker) is running on Windows or Linux, and if so enabled in the

operating system startup settings, the tray icon is displayed in the notification area of the
Windows taskbar, typically next to the time display at the bottom of the desktop.

Click the PrivX Desktop icon to open the GUI client.

Right-click the PrivX Desktop icon to open the shortcut menu.

Figure A.39. The shortcut menu of PrivX Desktop

The menu has the following product-specific options:

• About shows the installed version and license information.

• Configuration opens the Tectia Connections Configuration GUI.

• Quit Client closes the PrivX Desktop GUI.

• Stop Broker stops the Connection Broker and closes all open connections.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

223

Appendix B Command-Line Tools and
Man Pages
Tectia Client is shipped with several command-line tools. Their functionality is briefly explained in the
following appendices.

On Unix, the same information is available on the following manual pages:

• ssh-broker-g3(1): Connection Broker – Generation 3

• ssh-broker-ctl(1): Connection Broker control utility

• ssh-troubleshoot(8): utility for collecting system information for troubleshooting purposes

• sshg3(1): Secure Shell terminal client – Generation 3

• scpg3(1): Secure Shell file copy client – Generation 3

• sftpg3(1): Secure Shell file transfer client – Generation 3

• ssh-translation-table(1): Secure Shell file transfer translation table

• ssh-keygen-g3(1): authentication key pair generator

• ssh-keyfetch(1): utility for downloading server host keys

• ssh-cmpclient-g3(1): certificate CMP enrollment client

• ssh-scepclient-g3(1): certificate SCEP enrollment client

• ssh-certview-g3(1): certificate viewer

• ssh-ekview-g3(1): external key viewer

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

224 Appendix B Command-Line Tools and Man Pages

For a description of the Connection Broker configuration file options, see ssh-broker-config(5).

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

225

ssh-broker-g3

ssh-broker-g3 — Tectia Connection Broker - Generation 3

Synopsis

ssh-broker-g3 [-a, --broker-address= ADDR] [-f, --config-file= FILE] [-D, --debug=
LEVEL] [-l, --debug-log-file= FILE] [--pid-file= FILE] [--exit] [--reconfig] [-h] [-V]

Description

ssh-broker-g3 (ssh-broker-g3.exe on Windows) is a component of Tectia Client. It handles all
cryptographic operations and authentication-related tasks for Tectia Client and for the client programs
sshg3, scpg3, sftpg3, and ssh-client-g3.exe (on Windows only).

ssh-broker-g3 uses the Secure Shell version 2 protocol to communicate with a Secure Shell server.

You can start the Connection Broker manually by using the ssh-broker-g3 command. This starts ssh-
broker-g3 in the background and all following uses of sshg3, sftpg3, or scpg3 will connect via this
instance of the Connection Broker instead of starting a new Broker session.

If a command-line client (sshg3, sftpg3, or scpg3) is started when the Connection Broker is not running
in the background, the client starts the Broker in run-on-demand mode. In this mode, ssh-broker-g3 will
exit after the last client has disconnected.

If there is an ssh-broker-g3 process running in the run-on-demand mode, and the Connection Broker is
started from the command line, the new ssh-broker-g3 process sends a message to the old ssh-broker-g3
process to change from the run-on-demand mode to the background mode, keeping the Broker running
after the clients disconnect.

The status of the running Connection Broker can be checked using the ssh-broker-ctl and ssh-broker-
gui utilities.

Authentication

The Connection Broker operates automatically as an authentication agent, storing user's public keys and
forwarding the authentication over Secure Shell connections. Key pairs can be created with ssh-keygen-
g3.

The Connection Broker can also serve OpenSSH clients as an authentication agent.

The public key pairs used for user authentication are by default stored in the $HOME/.ssh2 directory
(%APPDATA%\SSH\UserKeys on Windows). See the section called “Files” for more information.

The Connection Broker automatically maintains and checks a database containing the public host keys
used for authenticating Secure Shell servers. When logging in to a server host for the first time, the
host's public key is stored in the user's $HOME/.ssh2/hostkeys directory (%APPDATA%\SSH\HostKeys
on Windows). See the section called “Files” for more information.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

226 Appendix B Command-Line Tools and Man Pages

Options

The most important options of ssh-broker-g3 are the following:

-a, --broker-address= ADDR

Listens to Connection Broker connections on a local address ADDR.

-D, --debug= LEVEL

Sets the debug level string to LEVEL.

-f, --config-file= FILE

Reads the Connection Broker configuration file from FILE instead of the default location.

-l, --debug-log-file= FILE

Dumps debug messages to FILE.

--pid-file= FILE

Stores the process ID of the Connection Broker to FILE.

--exit

Make the currently running Connection Broker exit. This will terminate all connections.

--reconfig

Re-reads the configuration file (ssh-broker-config.xml) and takes it into use.

-V, --version

Displays program version and exits.

-h, --help

Displays a short summary of command-line options and exits.

Environment Variables

The following optional environment variables are required in certain situations:

SSH_SECSH_BROKER =ADDRESS

This variable defines an address to a separate Tectia Connection Broker process to which a connection
is made.

This variable becomes necessary to define the location of the Connection Broker process, if you are
running it from a non-default location, or using a userID other than that of the ssh-broker-g3 process
owner.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

227

Files

ssh-broker-g3 uses the following files:

$HOME/.ssh2/ssh-broker-config.xml

This is the user-specific configuration file used by ssh-broker-g3 (and sshg3, scpg3, and sftpg3). The
format of this file is described in ssh-broker-config(5). This file does not usually contain any sensitive
information, but the recommended permissions are read/write for the user, and not accessible for
others.

On Windows, the user-specific configuration file is located in %APPDATA%\SSH\ssh-broker-
config.xml.

$HOME/.ssh2/random_seed

This file is used for seeding the random number generator. It contains sensitive data and its
permissions should be read/write for the user and not accessible for others. This file is created the
first time the program is run and it is updated automatically. You should never need to read or modify
this file.

On Windows, the random seed file is located in %APPDATA%\SSH\random_seed.

$HOME/.ssh2/identification

This file contains information on public keys and certificates used for user authentication when
connecting to remote hosts.

With Tectia Client G3, using the identification file is not necessary if all user keys are stored in the
default directory and you allow all of them to be used for public-key and/or certificate authentication.
If the identification file does not exist, the Connection Broker attempts to use each key found in
the $HOME/.ssh2 directory. If the identification file exists, the keys listed in it are attempted first.

The identification file contains a list of private key filenames each preceded by the keyword IdKey
(or CertKey). An example file is shown below:

IdKey mykey

This directs the Connection Broker to use $HOME/.ssh2/mykey when attempting login using public-
key authentication.

The files are by default assumed to be in the $HOME/.ssh2 directory, but also a path to the key file
can be given. The path can be absolute or relative to the $HOME/.ssh2 directory. If there is more than
one IdKey, they are tried in the order that they appear in the identification file.

On Windows, the identification file is located in %APPDATA%\SSH\identification. Key paths in
the file can be absolute or relative to the %APPDATA%\SSH directory and include same pattern strings
as supported for authorization file on server-side, for example C:\%username-without-domain%
\private_keys\mykey. The default user key directory is %APPDATA%\SSH\UserKeys and the default
user certificate directory is %APPDATA%\SSH\UserCertificates.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

228 Appendix B Command-Line Tools and Man Pages

$HOME/.ssh2/hostkeys

This is the user-specific default directory for storing the public keys of server hosts. You are prompted
to accept new or changed keys automatically when you connect to a server, unless you have set
strict-host-key-checking to yes in the ssh-broker-config.xml file. You should verify the key
fingerprint before accepting new or changed keys.

When the host key is received during the first connection to a remote host (or when the host key
has changed) and you choose to save the key, its filename is stored by default in hashed format. The
hashed host key format is a security feature to make address harvesting on the hosts difficult.

The storage format can be controlled with the filename-format attribute of the known-hosts
element in the ssh-broker-config.xml configuration file. The attribute value must be plain or
hash (default).

If you are adding the keys manually, the keys should be named with key_<port>_<host>.pub
pattern, where <port> is the port the Secure Shell server is running on and <host> is the hostname
you use when connecting to the server (for example, key_22_alpha.example.com.pub).

If both hashed and plain-text format keys exist, the hashed format takes precedence.

Note that the identification is different based on the host and port the client is connecting to. For
example, the short hostname alpha is considered different from the fully qualified domain name
alpha.example.com. Also a connection with an IP, for example 10.1.54.1, is considered a different
host, as is a connection to the same host but different port, for example alpha.example.com#222.

On Windows, the user-specific host key files are located in %APPDATA%\SSH\HostKeys.

For more information on host keys, see Section 4.2.

$HOME/.ssh2/hostkeys/salt

This is the initialization file for hashed host key names.

On Windows, the salt file is located in %APPDATA%\SSH\HostKeys\salt.

/opt/tectia/share/auxdata/ssh-broker-ng/ssh-broker-config-default.xml

This is the configuration file used by ssh-broker-g3 (and sshg3, scpg3, and sftpg3) that contains the
factory default settings. It is not recommended to edit the file, but you can use it to view the default
settings. The format of this file is described in ssh-broker-config(5).

On Windows, the default configuration file is located in <INSTALLDIR>\SSH Tectia AUX\ssh-
broker-ng\ssh-broker-config-default.xml.

/etc/ssh2/ssh-broker-config.xml

This is the global (system-wide) configuration file used by ssh-broker-g3 (and sshg3, scpg3, and
sftpg3). The format of this file is described in ssh-broker-config(5).

On Windows, the global configuration file is located in <INSTALLDIR>\SSH Tectia Broker\ssh-
broker-config.xml.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

229

/etc/ssh2/hostkeys

If a host key is not found in the user-specific $HOME/.ssh2/hostkeys directory, this is the next
location to be checked for all users. Host key files are not automatically put here but they have to be
updated manually by the system administrator (root).

If the administrator obtains the host keys by connecting to each host, the keys will be by default in
the hashed format. In this case, also the administrator's $HOME/.ssh2/hostkeys/salt file has to be
copied to the /etc/ssh2/hostkeys directory.

On Windows, the system-wide host key files are by default located in:

"C:\ProgramData\SSH\HostKeys"

/etc/ssh2/hostkeys/salt

This is the initialization file for hashed host key names. The file has to be copied here manually by
the same administrator that obtains the host keys.

On Windows, the salt file for all users is by default located in:

"C:\ProgramData\SSH\HostKeys\salt"

/etc/ssh/ssh_known_hosts

This is the default system-wide file used by OpenSSH clients for storing the public key data of known
server hosts. It is supported also by Tectia Client.

If a host key is not found in the user-specific $HOME/.ssh/known_hosts file, this is the next location
to be checked for all users.

The ssh_known_hosts file is never automatically updated by Tectia Client, since they store new host
keys always in the Tectia user-specific directory $HOME/.ssh2/hostkeys.

$HOME/.ssh/known_hosts

This is the default user-specific file used by OpenSSH clients for storing the public key data of known
server hosts. The known_hosts file is supported also by Tectia Client.

The known_hosts file contains a hashed or plain-text format entry of each known host key and the
port used on the server, in case it is non-standard (other than 22). For more information on the format
of the known_hosts file, see the OpenSSH sshd(8) man page.

The known_hosts file is never automatically updated by Tectia Client, since they store new host keys
always in the Tectia directory $HOME/.ssh2/hostkeys.

$HOME/.ssh2/authorized_keys (on the server host)

This directory is the default location used by Tectia Server for the user public keys that are authorized
for login.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

230 Appendix B Command-Line Tools and Man Pages

On Tectia Server on Windows, the default directory for user public keys is %USERPROFILE%
\.ssh2\authorized_keys.

$HOME/.ssh2/authorization (on the server host)

This is the default file used by earlier versions of Tectia Server (sshd2) that lists the user public keys
that are authorized for login. The file can optionally be used with Tectia Server G3 (ssh-server-g3)
as well.

On Tectia Server on Windows, the authorization file is by default located in %USERPROFILE%
\.ssh2\authorization.

For information on the format of this file, see the ssh-server-g3(8) man page.

$HOME/.ssh/authorized_keys (on the server host)

This is the default file used by OpenSSH server (sshd) that contains the user public keys that are
authorized for login.

For information on the format of this file, see the OpenSSH sshd(8) man page.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

231

ssh-broker-ctl

ssh-broker-ctl — Tectia Connection Broker control utility

Synopsis

ssh-broker-ctl command
[options ...]

Description

ssh-broker-ctl (ssh-broker-ctl.exe on Windows) is a control utility for the Connection Broker (ssh-
broker-g3). It can be used, for example, to view the status of the Connection Broker, to reconfigure or
stop the Connection Broker, to manage keys and certificates, and to manage connections.

Options

The following general options are available:

-a, --broker-address ADDRESS

Defines an address to a separate Tectia Connection Broker process to which a connection is made.

The same effect can be achieved by defining a Connection Broker address with environment variable
SSH_SECSH_BROKER.

Tip

If you are running ssh-broker-ctl using a userID other than that of the ssh-broker-g3
process owner, the -a option must be given so that ssh-broker-ctl knows where to connect.
In this case, you must also run ssh-broker-ctl as a privileged user (root).

For example, when user SSHBRKR owns the ssh-broker-g3 process, run the ssh-broker-ctl
with commands:

ssh-broker-ctl -a /tmp/ssh-SSHBRKR/ssh-broker status -s

ssh-broker-ctl -a /tmp/ssh-SSHBRKR/ssh-broker status --pid

ssh-broker-ctl -a /tmp/ssh-SSHBRKR/ssh-broker list-connections

-D, --debug STR

Defines the debug level.

-e, --charset= CS

Defines the character set to be used in the output. The supported character sets are utf8, iso-8895-1,
latin1, iso-8859-15, latin9, and ascii.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

232 Appendix B Command-Line Tools and Man Pages

-q, --quiet

Defines that little or no output is to be displayed, depending on the command.

-s, --short

Defines that a shorter, more machine readable, output format is to be used.

--time-format= FMT

Defines the time format to be used in the output. The default depends on the system locale settings.

-v, --verbose

Defines that more information, if available, is to be output.

-V, --version

Displays the version string.

-w, --wide

Defines that the output will not be truncated, even if it means long lines.

-h, --help

Displays a context-sensitive help text on command-line options. Help is available also on specific
commands. For example, to get help on the status command, run:

$ ssh-broker-ctl status --help

Commands

Note

For a detailed description of the command options, use the command-specific --help option.

ssh-broker-ctl accepts the following commands:

add-certificate [options] <certificate-file>

Adds the given X.509 sub-CA certificate to the Connection Broker certificate cache. The certificate
can be used in certificate validations but it is not stored permanently. Restarting the Connection
Broker will remove the certificate.

add-crl [options] <crl-file>

Adds the given X.509 CRL to the Connection Broker CRL cache. The CRL can be used in certificate
validations but it is not stored permanently. Restarting the Connection Broker will remove the CRL.

add-key filename

Adds a new private key from the given file name. The private key is not stored permanently in the
configuration. Stopping the Connection Broker will remove the key.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

233

add-provider type parameter

Registers a key provider to the Connection Broker. The type option is one of the supported provider
types and the parameter option is a parameter string specific to the provider type.

For a list of the supported key provider types and the corresponding parameter formats, use the
command-specific --help option.

auth-handler [options]

Registers itself as the default authentication form handler. All authentication prompts for clients that
are unable to handle them (mostly SOCKS proxy and other tunnels) are directed to this client.

For a list of the supported key provider types and the corresponding parameter formats, use the
command-specific --help option.

capture-driver [install [--path="PATH"|--disable-auto-start]] [uninstall [--force]
] [start] [stop [--force]] [reconfig] [debug <level> [--save-to="PATH"|--append|--
clear]]

Manage the Windows capture component (driver).

You can install the driver with the install command. The install command may optionally take a
custom installation path with --path. You may also disable automatic driver start with --disable-
auto-start. Note that the driver is automatically installed when you installed Tectia Client with the
Transparent TCP Tunneling feature.

The uninstall command may optionally use --force, in which case a Stop signal is sent even if
the driver can't stop instantly.

When you stop the driver, existing tunnels aren't affected. This only stops filtering new connections.
Use --force to send the Stop signal even if the driver cannot stop instantly.

The reconfig reads the capture configuration from the global configuration file and then writes it
to the registry for the driver to read. The driver will hot-reload the configuration. All the connected
brokers will reconnect to the driver. Running reconfig always restarts the trusted broker if it is
enabled and set to run on boot. This also means stopping any broker that is using the socket address
'capture-trusted-broker'. The configuration is written to Computer\HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Services\SSHCaptureDriver\Parameters\Configuration.

You can set debug to 0 or greater to obtain driver logs. The debug command also supports the
following options:

--save-to="PATH" for saving the debug logs to the specified path, if the path ends with .evtx logs
are saved in EventLog format.
--append to append new log entries to the file (instead of overriding).
--clear sets debug level to 0 and disables the Debug log.

The following levels are available for debug:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

234 Appendix B Command-Line Tools and Man Pages

0 - Log nothing.
1 - Log critical errors.
2 - Log regular errors.
3 - Log warnings.
4 - Log important events and high-level successes.
5+ - Verbose debug.

close-channel channel-id ...

Closes the defined channel. You can also enter multiple channel-IDs to close several channels.

close-connection connection-id ...

Closes the defined connection. You can also enter multiple connection-IDs to close several
connections.

close-tunnel-listener tunnel-id ...

Closes open tunnel listener. Tunnel id is either the id number returned by ssh-broker-ctl list-tunnel-
listeners command or a listen address and port pair separated by a colon. If the listen address is
omitted, local listeners (127.0.0.1) are selected. As an example, the following command closes the
listener with id 7, and the ones listening at 168.192.0.15 port 1234 and 127.0.0.1 port 2112:

$ ssh-broker-ctl ctl 7 168.192.0.15:1234 :2112

config-value [options] path

Retrieves configuration values from the Connection Broker based on the defined path and displays
them.

connection-status [--show-channels] [--write-hostkey= FILE] connection-id

Displays a detailed connection status for the connection ID (the numeric identifier shown by the list-
connections) command.

disconnect-client client-id

Disconnects a Connection Broker client process.

debug [--append] [--clear] [--log-file= file] [--monitor] [--protocol-dump] [debug-
level]

Sets the Connection Broker debug level to the defined level. If no debug-level parameter is given
here, the current debug level is not changed.

generate-key [options] key-name

Generates a private key using a key provider in the Connection Broker. By default the private key
will be stored as a software key into a file in the user's home directory. Key providers can offer other
methods for private key storage.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

235

keylog [--remove] [--all] [--update <key-id|key-hash>] [--init] [--uninit] [--close]
[-v, --verbose] [key-id|key-hash|hostname]

Keylog is used to manage uploaded public keys and to display a log of them. The Keylog does not
store the public keys, it only stores information about the keys and the hosts where the keys have been
uploaded to. The information can be used to manage the keys at a later stage, for example, to track
hosts where a key has been uploaded to. The keylog is not on by default, it must be enabled first.

Without the options, displays a list of the uploaded keys. If a key or a hostname is specified, only
the selected keys are displayed.

key-passphrase [--all] [--clear] [--passphrase-file= filename] [--passphrase-string=
passphrase] [key-id|key-hash]

Prompts the user's private-key passphrase or PIN code.

key-upload [options] [--replace-key] [--scan-key] [--delete-key] key [user@]server [
#port]

Uploads the selected key (key can be a key ID number, a public key hash or a file name) into
the authorized keys directory or file on the server, depending on the automatically detected upload
method. After the operation, the key can be used in public-key authencation to log in to the server
without a password. If the keylog is enabled, the command prompts for a keylog passphrase (if
needed), and information about the public keys is stored in the key upload log.

The option --replace-key will rotate the selected key according to normal key rotation rules. The
option --scan-key can be used to scan the selected hosts' keys. The option --delete-key can be
used to delete the selected authorized key(s).

list-connections [-c, --show-channels] [-s, --short] [--client-pid= PID] [--
disconnected]

Displays a list of the currently open connections together with connection parameters and traffic
statistics. Displays also the connection ID which can used with other commands to identify the
connection.

list-channels [-s, --short]

Displays a list of the currently open connection channels, together with channel type and traffic
statistics. Displays also the channel ID which is used by other commands to identify the connection.

list-clients [-c, --show-channels] [-s, --short] [--all]

Displays a list of the currently connected client processes.

list-keys [-s, --short] [--extra-certificates] [--provider= ID]

Displays a list of the user's private keys, together with the basic key attributes such as the key type,
size, and possible file name or key provider information. Outputs also the fingerprint and the identifier
of the key. The identifier is used by other Connection Broker commands to identify the private key.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

236 Appendix B Command-Line Tools and Man Pages

Use --short option to display a one-line description per user private key. Option --extra-
certificates lists extra certificates (CAs, certificates without private key) instead of user keys and
certificates. Option --provider=ID lists only keys reported by a given provider. The ID can be either
a number or a provider name.

list-profiles [-s, --short] [-v, --verbose] [name ...]

Displays a list of connection profiles in the Connection Broker. Shows the profile name and basic
connection settings, such as the host and the user name. If profile names are given, only those profiles
are listed.

list-providers [provider ...]

Displays a list of the key providers in the Connection Broker. If one or more provider names or ID
numbers are given, only those providers will be listed. The provider name can be either a full provider
name or a prefix.

list-tunnel-listeners [options]

Displays a list of the currently active tunnel listeners (also called port forwards).

open-tunnel-listener [options] listen-port [user@]server [#port] [dst-host] [dst-port]

Opens a tunnel listener, similar to sshg3 -L and -R options. The difference is that ssh-broker-
ctl will exit after the tunnel is opened. The tunnel status can be viewed with ssh-broker-ctl list-
tunnel-listeners command and the tunnel can be closed with ssh-broker-ctl close-tunnel-listener
command.

In local mode (default), the listener is opened to localhost listen-port. All connections will be tunneled
through server and from there to the final destination address and port. Tunnel types socks and
socks-proxy do not require destination information as it will be obtained from SOCKS client. Tunnel
types tcp, ftp and local require destination information.

performance [options] [show] [clear] [show-and-clear] [show-total] [interval <time|
index|'all'>]

Show and manipulate performance profiling data.

pkcs10-sign [options] key-id [subject-name]

Signs a PKCS#10 certificate request with the given key. The key-id can be either a key id or a key
hash. The subject name parameter is required unless the template option is used. If the subject name
is not a valid distinguished name, it will be wrapped automatically into a common name component.
For example, a subject name string My Name will be converted to CN=My Name.

probe-key [options] address#port

Probes for a Secure Shell server hostkey. Connects to the given address and port (defaults to 22) and
displays the server's public key or certificate.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

237

reload

Rereads the Connection Broker configuration file.

remove-key [options] key-id

Removes a private key permanently.

remove-provider [--all] provider-id

Removes a key provider from the Connection Broker.

start

Starts the Connection Broker in daemon mode if it is not already running.

start-gui

Starts the Connection Broker GUI process unless it is already running.

status [--all] [--defaults] [--pid] [-q, --quiet] [-s, --short]

Without parameters, displays short statistics and a configuration summary for the currently running
Connection Broker process.

With --defaults, the command lists the default settings instead of all supported algorithms.

stop

Stops the Connection Broker.

validate-certificate [options] <certificate-file>

Validates the given X.509 certificate. If a host name is given, also checks if the certificate would be
accepted as a host certificate for the host.

view-key [-s, --short] [-v, --verbose] [--clear] [--write-key= file] key-id

Displays information on the defined key. If the key has certificates, a short summary of them is also
shown.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

238 Appendix B Command-Line Tools and Man Pages

ssh-troubleshoot

ssh-troubleshoot — tool for collecting system information

Synopsis

ssh-troubleshoot [options] [command [command-options]]

Description

ssh-troubleshoot (ssh-troubleshoot.cmd on Windows) is a tool for collecting information on the
operating system (its version, patches, configuration settings, installed software components, and the
current environment and state) and on the Tectia installation (installed product components and versions,
their state, and the global and user-specific configurations).

The collected information will be stored in a file named
ssh_troubleshoot_<host>_<date>_<time>.tar on Unix and ssh_troubleshoot_*.log on
Windows. Send the file to the SSH technical support for analysis to help in troubleshooting situations.

To get all necessary information, run the command as an administrator, because it might need root access
to some directories.

Options

Enter each option separately, they cannot be combined. The following options are available:

-d, --debug LEVEL

Sets the debug level string to LEVEL.

-k, --keep-going

Defines that the data collecting is continued as long as possible, even after errors are encountered.
Not supported on Windows.

-o, --output FILENAME

Defines a non-default output file for storing the collected data. Not supported on Windows.

If FILENAME is '-', the collected data is added to the standard output. The default output file is
created in a temporary archive directory and stored as ssh-troubleshoot-data-<hostname>-
<timestamp>.tar. The timestamp is in format: yyyymmdd-hhmmUTC.

-u, --user USERNAME

Defines another user for the info command, the default is the current user. This affects the home
directory from which the user-specific Tectia configuration files are fetched. Not supported on
Windows.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

239

-q, --quiet

Suppresses detailed reporting about the command progress, reports only errors.

-h, --help

Displays this help text.

Commands

ssh-troubleshoot accepts the following command:

info

Gathers information about the system configuration. The collected data will be stored as a tar file
on Unix or a log file on Windows.

Options:

--include-private-keys

Collects everything from the specified user's configuration directories, including the private keys.
By default, the private keys nor unrecognized files are not included in the result data. This option
is not supported on Windows.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

240 Appendix B Command-Line Tools and Man Pages

sshg3

sshg3 — Secure Shell terminal client - Generation 3

Synopsis

sshg3 [options ...]
profile | [user@] host [#port]
[command]

Description

sshg3 (sshg3.exe on Windows) is a program for logging in to a remote machine and executing commands
on a remote machine. sshg3 provides secure, encrypted communication channels between two hosts over
an unsecured network. It can be used to replace the unsecured rlogin, rsh, and telnet programs. Also X11
connections and arbitrary TCP/IP ports can be forwarded over secure channels with sshg3.

To connect to a remote host using sshg3, give either the name of a connection profile defined in the ssh-
broker-config.xml file (profile) or the IP address or DNS name of the remote host, optionally with
the remote user name and the port of the Secure Shell server ([user@]host[#port]). If no user name
is given, the local user name is assumed. If no port is given, the default Secure Shell port 22 is assumed.
The remote host must be running a Secure Shell version 2 server.

sshg3 acts as a Connection Broker client and launches the actual Connection Broker process, ssh-broker-
g3 as a transport (in run-on-demand mode), or uses an already running Connection Broker process.
The Connection Broker will ask the user to enter a password or a passphrase if they are needed for
authentication. Connection Broker uses the configuration specified in the ssh-broker-config.xml file.

When the user's identity has been accepted by the server, the server either executes the given command,
or logs in to the machine and gives the user a normal shell. All communication with the remote command
or shell will be automatically encrypted.

If no pseudo-tty has been allocated, the session is transparent and can be used to securely transfer binary
data.

The session terminates when the command or shell on the remote machine exits and all X11 and TCP/IP
connections have been closed. The exit status of the remote program is returned as the exit status of sshg3.

Agent Forwarding (Unix)

ssh-broker-g3 acts as an authentication agent, and the connection to the agent is automatically forwarded
to the remote side unless disabled in the ssh-broker-config.xml file or on the sshg3 command line
(with the -a option).

X11 Forwarding

If the user is using X11 (the DISPLAY environment variable is set), the connection to the X11 display
can be automatically forwarded to the remote side in such a way that any X11 programs started from the

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

241

shell (or command) will go through the encrypted channel, and the connection to the real X server will
be made from the local machine. The user should not manually set DISPLAY. X11 connection forwarding
can be allowed in the ssh-broker-config.xml file or on the sshg3 command line (with the +x option).
By default, X11 forwarding is disabled.

The DISPLAY value set by sshg3 will point to the server machine, but with a display number greater than
zero. This is normal, and happens because sshg3 creates a "proxy" X server on the server machine for
forwarding the connections over the encrypted channel.

sshg3 will also automatically set up the Xauthority data on the server machine. For this purpose, it will
generate a random authentication cookie, store it in the Xauthority data on the server, and verify that any
forwarded connections carry this cookie and replace it with the real cookie when the connection is opened.
The real authentication cookie is never sent to the server machine (and no cookies are sent in the plain).

TCP Port Forwarding

Forwarding of arbitrary TCP/IP connections over the secure channel can be specified either in the ssh-
broker-config.xml file or on the sshg3 command line (with the -L and -R options).

Options

Command-line options override the settings in the ssh-broker-config.xml file if the same option has
been configured in both places. The following options are available:

-a, --no-agent-forwarding

Disables authentication agent forwarding. In the factory settings, agent forwarding is enabled.

+a

Enables authentication agent forwarding. In the factory settings, agent forwarding is enabled, but it
can be denied in the Connection Broker configuration file, in which case users cannot enable it on
the command-line and this +a will be ignored.

-B, --batch-mode

Uses batch mode. Fails authentication if it requires user interaction on the terminal.

Using batch mode requires that you have previously saved the server host key on the client and set up
a non-interactive method for user authentication (for example, host-based authentication or public-
key authentication without a passphrase).

-C

Disables compression from the current connection.

+C

Enables zlib compression for this particular connection.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

242 Appendix B Command-Line Tools and Man Pages

-c, --ciphers= LIST

Sets the allowed ciphers to be offered to the server. List the cipher names in a comma-separated list.
For example:

--ciphers seed-cbc@ssh.com,aes256-cbc

Value any allows all supported algorithms. Enter help as the value to view the currently supported
cipher names.

-D, --debug= LEVEL

Sets the debug level. LEVEL is a number from 0 to 99, where 99 specifies that all debug information
should be displayed. This should be the first argument on the command line.

Note

Option -D only applies on Unix. On Windows, instead of this command-line tool, use the
Connection Broker debugging options -D, -l.

Note

The debug level can be set only when the sshg3 command starts the Connection Broker.
This option has no effect in the command if the Connection Broker is already running.

-e, --escape-char= CHAR

Sets escape character (none: disabled, default: ~).

-f, --fork-into-background

Forks into background mode after authentication (Unix only). Use this option with tunnels and remote
commands. Implies -S (unless a command is specified). When tunnels have been specified, this
option makes sshg3 stay in the background, so that it will wait for connections indefinitely. sshg3
has to be killed to stop listening.

-g, --gateway

Gateways ports, which means that also other hosts may connect to forwarded ports. This option has
to be specified before the "-L" or "-R" option. Note the logic of + and - in this option.

+g

Does not gateway ports. Listens to tunneling connections originating only from the localhost. This is
the default value. Note the logic of + and - in this option.

-i FILE

Defines that private keys defined in the identification file are used for public-key authentication.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

243

-K, --identity-key-file= FILE

Defines that the given key file of a private key or certificate is used in user authentication. The path
to the key file is given in the command.

If the file is a private key, it will be read and compared to the keys already known by the Connection
Broker key store. If the key is not known, it will be decoded and added to the key store temporarily.
If the file is a certificate and Connection Broker knows a matching private key, it will be used. Both
the certificate and the private key can be given using multiple -K options on command line.

-L, --localfwd [protocol/] [listen-address:] listen-port:dst-host:dst-port

Forwards a port on the local (client) host to a remote destination host and port.

This allocates a listener port (listen-port) on the local client. Whenever a connection is made to this
listener, the connection is tunneled over Secure Shell to the remote server and another connection is
made from the server to a specified destination host and port (dst-host:dst-port). The connection
from the server onwards will not be secure, it is a normal TCP connection.

Giving the argument protocol enables protocol-specific forwarding. The protocols implemented are
tcp (default, no special processing), ftp (temporary forwarding is created for FTP data channels,
effectively securing the whole FTP session), and socks.

With the socks protocol, the syntax of the argument is "-L socks/[listen-address:]listen-
port". When this is set, Tectia Client acts as a SOCKS server for other applications, creating forwards
as requested by the SOCKS transaction. This supports both SOCKS4 and SOCKS5.

If listen-address is given, only that interface on the client is listened. If it is omitted, only local
interface is listened unless the --gateway is used to bind to all interfaces on the client-side.

-l, --user= USERNAME

Logs in using this user name.

-m, --macs= LIST

Sets the allowed MACs to be offered to the server. List the MAC names in a comma-separated list.
For example:

--macs hmac-sha1-96,hmac-md5,hmac-md5-96

Value any allows all supported algorithms. Enter help as the value to view the currently supported
MAC names.

-u, --kexs= kexs

Sets the allowed key exchange (KEX) methods to be offered to the server. List the KEX names in
a comma-separated list. For example:

--kexs diffie-hellman-group14-sha224@ssh.com,diffie-hellman-group14-sha256@ssh.com

Value any allows all supported algorithms. Enter help as the value to view the currently supported
KEX methods.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

244 Appendix B Command-Line Tools and Man Pages

-j, --hostkey-algs= algs

Sets the allowed host key algorithms to be offered to the server. List the host key algorithms in a
comma-separated list. For example:

--hostkey-algs ssh-dss-sha224@ssh.com,ssh-dss-sha256@ssh.com

Value any allows all supported algorithms. Enter help as the value to view the currently supported
host key algorithms.

-n, --dev-null (Unix) , -n, --null (Windows)

Redirects input from /dev/null (Unix) and from NUL (Windows).

-o option

Processes an option as if it was read from a Tectia Client 4.x-style configuration file. The supported
options are ForwardX11, ForwardAgent, AllowedAuthentications and PidFile. For example, -
o "ForwardX11=yes". Also -o "PidFile=/tmp/sshg3.pid" makes sshg3 to store its process ID
into file "/tmp/sshg3.pid" if it goes into background.

-P, --password= PASSWORD | file:// PASSWORDFILE | extprog:// PROGRAM

Sets user password that the client will send as a response to password authentication. The PASSWORD
can be given directly as an argument to this option (not recommended). Better alternatives are entering
a path to a file containing the password (--password=file://PASSWORDFILE), or entering a path to
a program or script that outputs the password (--password=extprog://PROGRAM).

When using the extprog:// option to refer to a shell script, make sure the script also defines the
user's shell, and outputs the actual password. Otherwise the executed program fails, because it does
not know what shell to use for the shell script. For example, if the password string is defined in a file
named my_password.txt, and you want to use the bash shell, include these lines in the script:

#!/usr/bash

cat /full/pathname/to/my_password.txt

Caution

Supplying the password on the command line is not a secure option. For example, in a multi-
user environment, the password given directly on the command line is trivial to recover from
the process table. You should set up a more secure way to authenticate. For non-interactive
batch jobs, it is more secure to use public-key authentication without a passphrase, or host-
based authentication. At a minimum, use a file or a program to supply the password.

-p, --port= PORT

Connects to this port on the remote host. A Secure Shell server must be listening on the same port.

--publickey-algorithms= PUBLICKEY_ALGORITHMS

Allow only selected signature algorithms to be used in public key authentication. For example:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

245

--publickey-algorithms=x509v3-ssh-rsa,rsa-sha2-512

Value any allows all supported algorithms. Enter help as the value to view the available signature
algorithms.

-q

Quiet mode, reports only fatal errors. This option overrides the quiet-mode setting made in the
Connection Broker configuration file.

-R, --remotefwd [protocol/] [listen-address:] listen-port:dst-host:dst-port

Forwards a port on the remote (server) host to a destination host and port on the local side.

This allocates a listener port (listen-port) on the remote server. Whenever a connection is made to
this listener, the connection is tunneled over Secure Shell to the local client and another connection is
made from the client to a specified destination host and port (dst-host:dst-port). The connection
from the client onwards will not be secure, it is a normal TCP connection.

Giving the argument protocol enables protocol-specific forwarding. The protocols implemented are
tcp (default, no special processing) and ftp (temporary forwarding is created for FTP data channels,
effectively securing the whole FTP session).

If listen-address is given, only that interface on the server is listened. If it is omitted, only local
interface is listened unless the --gateway is used to bind to all interfaces on the server-side.

-S, --no-session-channel

Does not request a session channel. This can be used with port-forwarding requests if a session
channel (and tty) is not needed, or the server does not give one.

+S

Requests a session channel. This is the default value.

-s, --subsystem subsystem remote_server

Sets a subsystem or a service to be invoked on the remote server. The subsystem is specified as a
remote command. For example: sshg3 -s sftp <server>

-t, --tty

Allocates a tty even if a command is given.

-v, --verbose

Uses verbose mode. More information or error diagnostics are output if a connection fails.

-x, -X, --no-x11-forwarding

Disables X11 connection forwarding. This is the default value.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

246 Appendix B Command-Line Tools and Man Pages

+x, +X

Enables X11 connection forwarding.

-z, --broker-log-file= FILE

Sets the Connection Broker log file to FILE. This option works only if ssh-broker-g3 gets started
by this process).

--aa, --allowed-authentications= METHODS

Defines the only allowed methods that can be used in user authentication. List the methods in a
comma-separated list. For example:

--allowed-authentications keyboard-interactive,password

Enter help as the value to view the currently supported authentication methods.

--abort-on-failing-tunnel

Aborts if creating a tunnel listener fails (for example, if the port is already reserved).

--any-alg

Allow any supported cipher, mac, kex, hostkey and publickey algorithm to be used.

--compressions= METHODS

Sets the allowed compression methods to be offered to the server. List the methods in a comma-
separated list.

Enter help as the value to view the currently supported compression methods.

--disconnect-message=MESSAGE

Sets a message that is displayed when disconnected. The message may contain any of the following
substitution variables:

• time: Time of disconnect.

• random: 16 random hexadecimal digits.

• random4: 4 random hexadecimal digits.

• random8: 8 random hexadecimal digits.

• random16: Same as random.

• pid: Process id of sshg3.

• broker_pid: Broker process id.

• conn_id: Connection id.

• session_id: Session id.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

247

• target_host: Target server name.

• target_port: Target server port.

If any of the random variables are used in a disconnect message, the random values are displayed to
the user before the authentication-success message.

--exclusive

Defines that a new connection will be opened for each connection attempt, otherwise Connection
Broker can reuse recently closed connections.

--hostkey-policy= POLICY

Defines the policy for checking server host keys and handling unknown server host keys. The possible
values are:

• ask (default): The user will be asked to verify and accept the server host keys, if the keys are not
found in the host key storage or if the keys have changed.

• strict: The connection to the server will be allowed only if the host key is found in the user's
known host keys storage.

• tofu: Trust on first use; new host keys are stored without prompting the user to accept them.

• advisory (not recommended): New host keys are stored without prompting the user to accept
them, and connections are allowed also to servers offering a changed host key.

Caution
Consider carefully before setting the policy to advisory. Disabling the host-key checks
makes the connection vulnerable to attacks.

You can also configure the host key policy in the ssh-broker-config.xml configuration file with
the <auth-server-publickey> element in the default-settings and per profile. See auth-
server-publickey .

If this option is set on the command-line client and configured in the ssh-broker-config.xml, the
command-line value will be used.

--identity= ID

Defines that the ID of the private key is used in user authentication. The ID can be Connection Broker-
internal ordinary number of the key, the key hash or the key file name.

--identity-key-hash ID

Defines the private key used in user authentication with the corresponding public key hash.

--identity-key-id ID

Defines that the Connection Broker-internal ordinary number of the key is used in user authentication.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

248 Appendix B Command-Line Tools and Man Pages

--keep-alive= VALUE

Defines how often keep-alive messages are sent to the Secure Shell server. Enter the value as seconds.
The default value is 0, meaning that keep-alive messages are disabled.

--kip

Defines keyboard-interactive and password as the allowed methods for user authentication; the same
as

--allowed-authentications keyboard-interactive,password

--remote-environment name= VALUE

When this option is used, the defined environment variables are passed to the server from the client
side. The environment variables are applied on the server when requesting a command, shell or
subsystem.

Note that the server can restrict the setting of environment variables.

You can also configure the environment variables to be passed to the server in the ssh-broker-
config.xml configuration file with the <remote-environment> element in the default-settings
and per profile. See remote-environment .

If the same variable is entered on the command-line client and configured in the ssh-broker-
config.xml, the command-line version will be used.

--remote-environment-format name= VALUE

The defined environment variables are passed to the server from the client side. The Connection
Broker processes the value before sending it to the server.

You can use %U in the value to indicate a user name. The Connection Broker replaces the %U with
the actual user name before sending it to the server.

For more information, see the --remote-environment option above.

--tcp-connect-timeout= VALUE

Defines a timeout period (in seconds) for establishing a TCP connection to the Secure Shell server.
Enter the value as a positive number.

--template-profile profile

Use the specified profile when connecting.

This may be useful for example when connecting to legacy servers that do not support modern
algorithms. In such cases you may define in ssh-broker-config.xml configuration file a profile
with the required algorithms similar to the following.

<profile name="legacy"

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

249

 host=""

 id="legacy">

 <kexs>

 <kex name="diffie-hellman-group1-sha1" />

 </kexs>

 <hostkey-algorithms>

 <hostkey-algorithm name="ssh-dss" />

 </hostkey-algorithms>

 <ciphers>

 <cipher name="aes128-cbc" />

 </ciphers>

</profile>

Then connect with:

$ sshg3 --template-profile legacy user@host

CAUTION: Using insecure algorithms can lead to data leaks. We recommend you rather update your
legacy servers to support modern algorithms.

-V, --version

Displays program version and exits.

-h, --help, -?

Displays a short summary of command-line options and exits.

Commands

sshg3 can take as a command either of the following ones:

remote_command [arguments] ...

Runs the command on a remote host.

-s service

Enables a service in remote server.

Escape Sequences

sshg3 supports escape sequences to manage a running session. For an escape sequence to take effect, it
must be typed directly after a newline character (press Enter first). The escape sequences are not displayed
on screen during typing.

The following escape sequences are supported:

~.

Terminates the connection.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

250 Appendix B Command-Line Tools and Man Pages

~Ctrl-Z

Suspends the session.

~~

Sends the escape character literally.

~#

Lists forwarded connections.

~-

Disables the escape character irrevocably.

~?

Displays a summary of escape sequences.

~l

Enable linemode.

~r

Initiates rekeying manually.

~s

Gives connection statistics, including server and client version, packets in, packets out, compression,
key exchange algorithms, public-key algorithms, and symmetric ciphers.

~u

Uploads the chosen public key automatically to the server. If the user has only one key, it will be
uploaded. Otherwise the largest key with a name that matches id_rsa_<size>_a will be selected.

~U

Uploads a public key to the server. A list of available keys is printed and the user is prompted to
select one to be uploaded.

~c

Gives statistics for individual channels (data window sizes etc). This is for debugging purposes.

~V

Dumps the client version number to stderr (useful for troubleshooting).

Environment Variables

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

251

Upon connection, the Secure Shell server will automatically set a number of environment variables that
can be used by sshg3. The exact variables set depend on the Secure Shell server. The following variables
can be used by sshg3:

DISPLAY

The DISPLAY variable indicates the location of the X11 server. It is automatically set by the server
to point to a value of the form hostname:n where hostname indicates the host on which the server
and the shell are running, and n is an integer greater than or equal to 1. sshg3 uses this special value
to forward X11 connections over the secure channel.

The user should normally not set DISPLAY explicitly, as that will render the X11 connection unsecured
(and will require the user to manually copy any required authorization cookies).

HOME

The user's home directory.

LOGNAME

Synonym for USER; set for compatibility with systems using this variable.

MAIL

The user's mailbox.

PATH

Set to the default PATH, depending on the operating system or, on some systems, /etc/environment
or /etc/default/login.

SSH_SOCKS_SERVER

The address of the SOCKS server used by sshg3.

SSH2_AUTH_SOCK

If this exists, it is used to indicate the path of a Unix-domain socket used to communicate with the
authentication agent (or its local representative).

SSH2_CLIENT

Identifies the client end of the connection. The variable contains three space-separated values: client
IP address, client port number, and server port number.

SSH2_ORIGINAL_COMMAND

This will be the original command given to sshg3 if a forced command is run. It can be used, for
example, to fetch arguments from the other end. This does not have to be a real command, it can be
the name of a file, device, parameters or anything else.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

252 Appendix B Command-Line Tools and Man Pages

SSH2_TTY

This is set to the name of the tty (path to the device) associated with the current shell or command.
If the current session has no tty, this variable is not set.

TZ

The time-zone variable is set to indicate the present time zone if it was set when the server was started
(the server passes the value to new connections).

USER

The name of the user.

For a list of varibles set by Tectia Server, see the ssh-server-g3(8) man page.

Exit Values

sshg3 returns the following values based on the result of the operation:

0 Operation was successful.

1 sshg3 has encountered an error,

 the reason is usually given in an error message.

When executing remote commands, sshg3 exits with the status of the command run indicated with exit
codes:

0 The remote command was run successfully.

127 The requested remote command was not found.

Examples

Connect as the local user name to host remotehost, port 2222, and open shell:

$ sshg3 remotehost#2222

Connect to the host specified by the connection profile profile1 in the ssh-broker-config.xml file,
and run the who command (and exit after running the command):

$ sshg3 profile1 who

Connect as user to host remotehost, and open a local port forwarding from port 143 on the client to port
143 on imapserver. Do not open shell. Also other hosts may connect to the local port. The connection
from remotehost to imapserver will not be secured:

$ sshg3 -L 143:imapserver:143 -g -S user@remotehost

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

253

scpg3

scpg3 — Secure Shell file copy client - Generation 3

Synopsis

scpg3 [options ...]
[src_profile: | [user@] src_host [#port]:] src_file ...
[dst_profile: | [user@] dst_host [#port]:] dst_file_or_dir

Description

scpg3 (scpg3.exe on Windows) is used to securely copy files over the network. scpg3 launches ssh-
broker-g3 to provide a secure transport using the Secure Shell version 2 protocol. ssh-broker-g3 will ask
for passwords or passphrases if they are needed for authentication. scpg3 uses the configuration specified
in the ssh-broker-config.xml file.

Copies between two remote hosts are permitted. The remote host(s) must be running a Secure Shell
version 2 server with the sftp-server (or sft-server-g3) subsystem enabled. Tectia Server has sft-server-
g3 enabled by default.

Any filename may contain a host, user, and port specification to indicate that the file is to be copied to
or from that host ([user@] host [#port]). If no user name is given, the local user name is assumed. If no
port is given, the default Secure Shell port 22 is assumed. Alternatively, a connection profile defined in
the ssh-broker-config.xml file (profile) can be given.

Note

When entering a connection profile in the scpg3 command, note that Tectia Client deduces the
meaning of the argument differently depending on its format. If there is an @ sign in the given
attribute value, Tectia Client always interprets it to be <username@hostname>, i.e. not a profile.

Also, if there are dots in a profile name (for example host.x.example.com, the dots need to
be escaped on command line. On Unix, enter host\.x\.example\.com, instead. On Windows,
enter host˜.x˜.example˜.com, instead. Otherwise the profile name is taken as a host name
and the current Windows user name is used for logging in.

The host parameter can optionally be enclosed in square brackets ([]) to allow the use of semicolons. The
file argument can contain simple wildcards: asterisk (*) for any number of any characters, and question
mark (?) for any one character.

For information on special characters in file names, see the section called “Filename Support”.

Options

The following command-line parameters can be used to further specify the scpg3 options.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

254 Appendix B Command-Line Tools and Man Pages

-4

Defines that all connection-related DNS resolutions will be resolved as an IPv4 address.

-6

Defines that all connection-related DNS resolutions will be resolved as an IPv6 address.

-a [arg]

Transfers files using the ASCII mode, that is, newlines will be converted on the fly. For transfers
between Tectia on z/OS and other hosts, this also enables automatic ASCII-EBCDIC conversions.
See the sftpg3 ascii command in the section called “Commands”.

If the server does not advertise the newline convention, and you are not using a host profile that
specifies its host type, you can give scpg3 a hint by giving an argument after -a. The default is to set
the destination newline convention, but you can specify either one by prefixing the argument with
src: or dest: for source or destination convention, respectively. The available conventions are dos,
unix, and mac, using \r\n, \n, and \r as newlines, respectively. Note that there is no space between
the -a and its argument. An example is shown below:

$ scpg3 -asrc:unix -adest:dos src_host:src_file dest_host:dest_file

To force the newline conventions, use these values: force-dos, force-unix, and force-mac. These
settings force the newline mode irrespective of what the remote SSH server suggests to the SCP client.

-B, --batch-mode

Uses batch mode. Fails authentication if it requires user interaction on the terminal.

Using batch mode requires that you have previously saved the server host key on the client and set up
a non-interactive method for user authentication (for example, host-based authentication or public-
key authentication without a passphrase).

-b buffer_size_bytes

Defines the maximum buffer size for one SFTP protocol read or write request (default: 32768 bytes).

The maximum number of SFTP protocol read or write requests sent in parallel within the transfer of
a single file can be specified with the -N option.

Note that when streaming (see --streaming) is used (as it is by default when transferring files larger
than buffer_size_bytes to/from Tectia Server), this option is not used for defining buffer sizes.

-C

Disables compression from the current connection.

+C

Enables zlib compression for this particular connection.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

255

-c, --ciphers= LIST

Sets the allowed ciphers in their preferred order offered to the server. List the cipher names in a
comma-separated list. For example:

--ciphers AEAD_AES_128_GCM,seed-cbc@ssh.com,aes256-cbc

Value any allows all supported algorithms. Enter help as the value to view the currently supported
cipher names.

-D, --debug= LEVEL

Sets the debug level. LEVEL is a number from 0 to 99, where 99 specifies that all debug information
should be displayed. This should be the first argument on the command line.

Note

Option -D only applies on Unix. On Windows, instead of this command-line tool, use the
Connection Broker debugging options -D, -l.

Note

The debug level can be set only when the scpg3 command starts the Connection Broker.
This option has no effect in the command if the Connection Broker is already running.

-d

Forces target to be a directory.

-I, --interactive

Prompts whether to overwrite an existing destination file (does not work with -B).

-i FILE

Defines that private keys defined in the identification file are used for public-key authentication.

-K, --identity-key-file= FILE

Defines that the given key file of a private key or certificate is used in user authentication. The path
to the key file is given in the command.

If the file is a private key, it will be read and compared to the keys already known by the Connection
Broker key store. If the key is not known, it will be decoded and added to the key store temporarily.
If the file is a certificate and Connection Broker knows a matching private key, it will be used. Both
the certificate and the private key can be given using multiple -K options on command line.

-m fileperm [:dirperm]

This option can be used only on Windows. Sets the default file and directory permission bits for file
upload to Unix servers.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

256 Appendix B Command-Line Tools and Man Pages

-N max_requests

Defines the maximum number of SFTP protocol read or write requests sent in parallel (default: 10).

The size of the buffer used in each read or write request can be specified with the -b option.

Note that this value applies within the transfer of a single file; it cannot be used to define the number
of files sent in parallel.

When streaming (see --streaming) is used (as it is by default when transferring files larger than
buffer_size_bytes specified with the -b option to/from Tectia Server), this option is not used.

-O, --offset= r <offset> | w <offset> | l <length> | t <length>

Sets offset. Offset r<offset> specifies the start offset in the source file. Offset w<offset> specifies
the start offset in the destination file. Length l<length> specifies the amount of data to be copied.
Truncate length t<length>, if given, specifies the length to which the destination file is truncated
or expanded after the file data has been copied.

-p

Preserves the file permissions and the timestamps when both the source and the destination are on
Unix file systems (including z/OS USS). Preserves the timestamps but not the file permissions, if
either one, the source or the destination is on Windows. If the destination is on z/OS MVS, none
will be preserved.

-P port

Connects to this Secure Shell port on the remote machine (default: 22).

-Q

Does not show progress indicator. The effect of this option is the same as using --progress-
display=no.

Do not use this option together with parameter --statistics.

-q

Uses quiet mode (only fatal errors are shown). This option overrides the quiet-mode setting made
in the Connection Broker configuration file.

-r

Recurses subdirectories.

-u, --unlink-source

Removes source files after copying (file move).

-v, --verbose

Uses verbose mode (equal to -D 2).

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

257

-W, --whole-file

Does not try incremental checks. By default (if this option is not given), incremental checks are tried.
This option can only be used together with the --checksum option.

--aa, --allowed-authentications= METHODS

Defines the only allowed methods that can be used in user authentication. List the methods in a
comma-separated list. For example:

--allowed-authentications keyboard-interactive,password

Enter help as the value to view the currently supported authentication methods.

--any-alg

Allow any supported cipher, mac, kex, hostkey and publickey algorithm to be used.

--append

Appends data to the end of the destination file.

--binary

Uses binary transfer mode. If the server is Tectia Server for IBM z/OS, the server is requested not to
perform ASCII to EBCDIC conversion, and the file is transferred using the Stream format. You can
use the --src-site and --dst-site options to change the values.

--checkpoint=b <bytes>

Byte interval between checkpoint updates (default: 10 MB). This option can only be used when --
checksum=checkpoint.

--checkpoint=s <seconds>

Time interval between checkpoint updates (default: 10 seconds). This option can only be used when
--checksum=checkpoint.

--checksum [=yes | no | md5 | sha1 | sha256 | sha512 | md5-force | sha1-force | sha256-force |
sha512-force | checkpoint]

Uses MD5, SHA-1 or SHA-2 checksums or a separate checkpoint database to determine the point in
the file where file transfer can be resumed. Files smaller than buffer_size_bytes are not checked
unless forced, i.e. sha1-force. (default: yes, uses SHA-1 checksums in FIPS mode, MD5 checksums
otherwise). Use checkpointing when transferring large files one by one.

--compressions= METHODS

Sets the allowed compression methods to be offered to the server. List the methods in a comma-
separated list.

Enter help as the value to view the currently supported compression methods.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

258 Appendix B Command-Line Tools and Man Pages

--dst-site= PARAM

Uses the specified site parameters with the destination files. See the sftpg3 site command in the
section called “Commands”.

--exclusive

Defines that a new connection will be opened for each connection attempt, otherwise Connection
Broker can reuse recently closed connections.

--fips

Performs the checksums using the FIPS cryptographic library.

--force-lower-case

Destination filename will be converted to lowercase characters.

--hostkey-algorithms= HOSTKEYALGORITHMS

Sets the allowed host key algorithms to be offered to the server. List the host key algorithms in a
comma-separated list. For example:

--hostkey-algorithms ssh-dss-sha224@ssh.com,ssh-dss-sha256@ssh.com

Value any allows all supported algorithms. Enter help as the value to view the currently supported
host key algorithms.

--overwrite [=yes | no]

Selects whether to overwrite existing destination file(s) (default: yes).

--identity= ID

Defines that the ID of the private key is used in user authentication. The ID can be Connection Broker-
internal ordinary number of the key, the key hash or the key file name.

--identity-key-hash= ID

Defines the private key used in user authentication with the corresponding public key hash.

--identity-key-id= ID

Defines that the Connection Broker-internal ordinary number of the key is used in user authentication.

--keep-alive= VALUE

Defines how often keep-alive messages (non-operation packages) are sent to the Secure Shell server.
Enter the value as seconds. The default value is 0, meaning that keep-alive messages are disabled.

--kexs= kexs

Sets the allowed key exchange (KEX) methods to be offered to the server. List the KEX names in
a comma-separated list. For example:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

259

--kexs diffie-hellman-group14-sha224@ssh.com,diffie-hellman-group14-sha256@ssh.com

Value any allows all supported algorithms. Enter help as the value to view the currently supported
KEX methods.

--kip

Defines keyboard-interactive and password as the allowed methods for user authentication; the same
as

--allowed-authentications keyboard-interactive,password

--macs= LIST

Sets the allowed MACs in preferred order to be offered to the server. List the MAC names in comma-
separated list. For example:

--macs hmac-sha2-256,hmac-sha1-96,hmac-md5

Value any allows all supported algorithms. Enter help as the value to view the currently supported
MAC names.

--password= PASSWORD | file:// PASSWORDFILE | extprog:// PROGRAM

Sets user password that the client will send as a response to password authentication. The PASSWORD
can be given directly as an argument to this option (not recommended). Better alternatives are entering
a path to a file containing the password (--password=file://PASSWORDFILE), or entering a path to
a program or script that outputs the password (--password=extprog://PROGRAM).

When using the extprog:// option to refer to a shell script, make sure the script also defines the
user's shell, and outputs the actual password. Otherwise the executed program fails, because it does
not know what shell to use for the shell script. For example, if the password string is defined in a file
named my_password.txt, and you want to use the bash shell, include these lines in the script:

#!/usr/bash

cat /full/pathname/to/my_password.txt

Caution

Supplying the password on the command line is not a secure option. For example, in a multi-
user environment, the password given directly on the command line is trivial to recover from
the process table. You should set up a more secure way to authenticate. For non-interactive
batch jobs, it is more secure to use public-key authentication without a passphrase, or host-
based authentication. At a minimum, use a file or a program to supply the password.

--plugin-path= PATH

Sets plugin path to PATH. This is only used in the FIPS mode.

--prefix= PREFIX

Adds a prefix to a filename during the file transfer. The prefix is removed after the file has been
successfully transferred.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

260 Appendix B Command-Line Tools and Man Pages

On z/OS, when applied to MVS data set names, the prefix is inserted after the High Level Qualifier
(HLQ). In case you want the prefix to be a separate qualifier, include a dot at the end of the prefix:

--prefix=PREFIX.

--publickey-algorithms= PUBLICKEY_ALGORITHMS

Allow only selected signature algorithms to be used in public key authentication. For example:

--publickey-algorithms=x509v3-ssh-rsa,rsa-sha2-512

Value any allows all supported algorithms. Enter help as the value to view the available signature
algorithms.

--src-site= PARAM

Uses the specified site parameters with the source files. See the site command in the section called
“Commands”.

--statistics [=no | yes | simple]

Note

In release 6.1.5, the behavior of the --statistics option has changed and the --
statistics-format option has been removed. Instead of them, use the new --summary-
display and --summary-format options.

The --statistics option chooses the style of the statistics to be shown after a file transfer operation.
Note that --statistics and --summary-display must not be used together.

The --statistics option takes the following values:

no - no statistics will be created.

yes - shows a progress bar during the file transfer. This is the default. An example of the output:

scpg3 --statistics="yes" sourcefile destinationfile

sourcefile | 127MB | 42.9MiB/s | TOC: 00:00:03 | 100%

simple - simple one-line statistics will be displayed after the file transfer has ended. For example:

scpg3 --statistics=simple sourcefile destinationfile

sourcefile | 127MB | 151.3MiB/s | TOC: 00:00:00 | 100%

--summary-display [=no | yes | simple | bytes]

Chooses the style of the file transfer summary data to be displayed after a file transfer operation.
With the summary display, the progress bar data is also displayed by default.

Note that --summary-display and --statistics must not be used together.

The --summary-display option takes the following values:

no - no summary data will be created. This is the default.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

261

yes - detailed summary data will be created. You can configure the contents with the summary-
format option. By default, the following contents are displayed in the summary:

Default settings: Render for example this:

"Source: %c:%g\n" user@host1#22:/path/to/source/file

"Source parameters: %e\n" X=TEXT, C=ISO8859-1,D=IBM.1047

"Destination: %C:%G\n" user@host2#22:/path/to/destination/file

"Destination parameters: %E\n" NONE

"File size: %s bytes\n" 123456 bytes

"Transferred: %t bytes\n" 123456 bytes

"Rate: %RB/s\n" 345kiB/s

"Start: %xy-%xt-%xd %xh:%xm:%xs\n" 2010-01-26 13:10:56

"Stop: %Xy-%Xt-%Xd %Xh:%Xm:%Xs\n" 2010-01-26 13:23:30

"Time: %y\n" 00:12:34

simple - simple one-line summary will be displayed. For example:

scpg3 --summary-display=simple sourcefile destinationfile

sourcefile | 127MB | 151.3MiB/s | TOC: 00:00:00 | 100%

bytes - basic statistics reporting the transferred bytes will be displayed. For example:

scpg3 --summary-display=bytes sourcefile destinationfile

Transferred 12915145984 bytes, file: 'sourcefile' -> 'destinationfile'

--summary-format= FORMAT_STRING

Chooses the format and the contents of the summary. You can use this option when --summary-
display=yes. Do not use this option with --statistics.

Select the contents for the summary using the following definitions:

%c - source connection: user@host#port or profile

%C - destination connection: user@host#port or profile

%D* - current date

%e - source parameters (file transfer and data set parameters)

%E - destination parameters (file transfer and data set parameters)

%f - source file name

%F - destination file name

%g - /path/to/source/file

%G - /path/to/destination/file

%k - compression done ("zlib" or "none")

%p - transfer percentage

%q - transfer rate in bit/s

%Q - transfer rate as "XXyb/s" (b/s, kib/s, Mib/s, Gib/s)

%r - transfer rate in bytes/s

%R - transfer rate as "XXyB/s" (B/s, kiB/s, MiB/s, GiB/s)

%s - file size in bytes

%S - file size as "XXyB" (B, kiB, MiB or GiB)

%t - transfer size in bytes

%T - transfer size as "XXyB" (B, kiB, MiB or GiB)

%x* - start date

%X* - end date

%y - elapsed time

%Y - time remaining

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

262 Appendix B Command-Line Tools and Man Pages

%z - ETA or TOC, if transfer has finished

%Z - string "ETA" or "TOC", if transfer has finished

Where * is one of the following:

h - hours (00-23)

m - minutes (00-59)

s - seconds (00-59)

f - milliseconds (0-999)

d - day of the month (1-31)

t - month (1-12)

y - year (1970-)

Other special characters in format strings are:

\n - line feed

\r - carriage return

\t - horizontal tab

\\ - backslash

--progress-display [=no | bar | line]

Chooses the mode of displaying the progress during a file transfer operation. The default is bar,
which shows a progress bar. Option line shows the progress information according to the settings
made in the --progress-line-format option.

Do not use this option with --statistics.

--progress-line-format= FORMAT_STRING

Chooses what information will be shown on the progress line. You can use this option when --
progress-display=line.

Do not use this option with --statistics.

Select the contents for the progress line using the definitions described for command: --summary-
format

--progress-line-interval= seconds

Defines how often the progress information is updated in line mode. The interval is given in seconds,
and the default is 60 seconds.

Do not use this option with --statistics.

--streaming [=yes | no | force | ext]

Uses streaming in file transfer, if server supports it. Files smaller than buffer_size_bytes are not
transferred using streaming. Use force with small files. Default: yes

Use ext with z/OS hosts to enable direct MVS data set access. Use this option only when the file
transfer is mainly used for mainframe data set transfers, as it can slow down the transfer of small
files in other environments.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

263

The --streaming=ext option requires also the --checksum=no option, because if checksums are
calculated, the file transfer uses staging, which excludes streaming.

--sunique

Stores files with unique names. In case more than one of the transferred files have the same name,
this feature adds a sequential number to the end of the repeated file name, for example: file.name,
file.name1, and file.name2.

--tcp-connect-timeout= VALUE

Defines a timeout period (in seconds) for establishing a TCP connection to the Secure Shell server.
Enter the timeout value as a positive number. Value 0 (zero) disables this feature and the default
system TCP timeout will be used instead.

--template-profile profile

Use the specified profile when connecting.

--user= USERNAME

Logs in using this user name if the user name is not provided in the address string.

-V, --version

Displays program version and exits.

-h, --help, -?

Displays a short summary of command-line options and exits.

Filename Support

Different operating systems allow different character sets in filenames. On Unix, some of the special
characters are allowed in filenames, but on Windows, the following characters are not allowed:

\/ : * ? " < > |

When you use the scpg3 command to copy files with special characters (for example
unixfilename*?".txt) from a Unix server to Windows, you need to provide the files with new names
that are acceptable on Windows. Enter the commands in the following format:

$ scpg3 user@unixserver:"unixfilename~*~?\".txt" windowsfilename.txt

The general rule is to follow your platform specific syntax when you enter filenames containing special
characters as arguments to the scpg3 command.

Tectia fully supports filenames containing only ASCII and UTF-8 characters. Filenames containing
characters from other character sets are not guaranteed to work.

Using Wildcards

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

264 Appendix B Command-Line Tools and Man Pages

The scpg3 command supports * and ? as wildcards.

The wildcards can be used both on the remote and the local side in the commands. The following example
command will copy all text files (*.txt) from all subdirectories of directory dir2 whose names begin
with the prefix data- into the current local directory (.):

$ scpg3 -r user@server:"dir2/data-*/*.txt" .

Note that on Unix, the characters * and ? can appear also in the filenames. So it is necessary to use escape
characters to distinguish the wildcards from the characters belonging to a filename. See more information
in the section called “Escaping Special Characters”.

Escaping Special Characters

Some special characters that are used in filenames in different operating system, may have a special
meaning in the Tectia commands. Note also that the meaning can be different in various parts of the file
transfer system.

In the scpg3 command, the following characters have a special meaning, and they need to be escaped in
commands that take filenames as arguments:

* asterisk is a wildcard for any number of any characters

? question mark is a wildcard for any single character

"" quotation marks placed around strings that are to be taken 'as is'

\ backslash is an escape character on Unix

~ tilde is an escape character on Windows.

The escape character tells the scpg3 command to treat the next character "as is" and not to assume any
special meaning for it. The escape character is selected according to the operating system of the local
machine.

Note that the \ and ~ characters are special characters themselves, and if they are present in the filename,
escape characters must be placed in front of them, too. Therefore, if you need to enter a filename containing
\ in Unix or ~ in Windows to the scpg3 command, add the relevant escape character to it:

\\ on Unix

~~ on Windows

See the examples below to learn how the escape characters are used in the Tectia scpg3 command, and
how to enter filenames with special characters in different operating systems.

Examples of filenames in the scpg3 command:

The following filenames are valid in Unix, but they need escape characters in the commands:

file|name.txt

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

265

file-"name".txt

file?name.txt

file*name.txt

file\name.txt

file - name.txt

file~name.txt

When using the scpg3 command on Unix, in certain cases several escape characters are needed, as
they escape one another. Enter the above mentioned filenames in the following formats:

file\|name.txt or "file|name.txt"

file-\"name\".txt

file\\\?name.txt or "file\?name.txt"

file*name.txt or "file*name.txt"

file\\\\name.txt or "file\\\name.txt"

file\ -\ name.txt or "file - name.txt"

file~name.txt

Example commands on Unix:

$ scpg3 user@server:file*name.txt .

$ scpg3 user@server:file\ -\ name.txt .

When using the scpg3 command on Windows, enter the above mentioned Unix filenames in the
following formats:

"file|name.txt"

file-\"name\".txt (Note that Windows requires \ to escape the " character)

"file~?name.txt"

"file~*name.txt"

file~\name.txt

"file - name.txt"

file~~name.txt

The operating system interprets the quotation marks ("") here so that the scpg3 command receives
the string without the quotation marks as a parameter.

Example commands on Windows:

> scpg3 user@server:"file~*name.txt" filename.txt

> scpg3 user@server:"file - name.txt" .

Environment Variables

scpg3 uses the following environment variables:

SSH_SFTP_CHECKSUM_MODE =yes|no|md5|sha1|sha256|sha512|md5-force|sha1-force|

sha256-force|sha512-force|checkpoint

Defines the setting for comparing checksums. For more information on the available values, see
checksum .

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

266 Appendix B Command-Line Tools and Man Pages

SSH_SFTP_SHOW_BYTE_COUNT =yes|no

If this variable is set to yes, the number of transferred bytes is shown after successful file transfer.
Also the names of source and destination files are shown. The default is no.

SSH_SFTP_STATISTICS =yes|no|simple

If this variable is set to yes (default), normal progress bar is shown while transferring the file. If it
is set to no, progress bar is not shown. If it is set to simple file transfer statistics are shown after
the file has been transferred.

UTF8_MODE =0|1

If this variable is set to 0, the default charset mode UTF-8 is disabled. To force UTF-8 charset mode
for file names, set the variable to 1.

Exit Values

scpg3 returns the following values based on the result of the operation:

0 Operation was successful.

1 Internal error.

2 Connection aborted by the user.

3 Destination is not a directory, but a directory was specified by the user.

4 Connecting to the host failed.

5 Connection lost.

6 File does not exist.

7 No permission to access file.

8 Undetermined error from sshfilexfer.

11 Some non-fatal errors occured during a directory operation.

101 Wrong command-line arguments specified by the user.

Examples

Copy files from your local system to a remote Unix system:

$ scpg3 localfile user@remotehost:/dst/dir/

Copy files from your local system to a remote Windows system:

$ scpg3 localfile user@remotehost:/C:/dst/dir/

Copy files from a remote system to your local disk:

$ scpg3 user@remotehost:/src/dir/srcfile /dst/dir/dstfile

Copy files from one remote system to another using connection profiles defined in the ssh-broker-
config.xml file:

$ scpg3 profile1:/src/dir/srcfile profile2:/dst/dir/dstfile

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

267

sftpg3

sftpg3 — Secure Shell file transfer client - Generation 3

Synopsis

sftpg3 [options ...]
[profile | [user@] host [#port] [:path] | sftp:// [[user] [:password] @] host [:port]
[/path]]

Description

sftpg3 (sftpg3.exe on Windows) is an FTP-like client that can be used for secure file transfer over the
network. sftpg3 launches ssh-broker-g3 to provide a secure transport using the Secure Shell version 2
protocol. ssh-broker-g3 will ask for passwords or passphrases if they are needed for authentication. sftpg3
uses the configuration specified in the ssh-broker-config.xml file.

When started interactively, sftpg3 displays a prompt where the SFTP commands can be entered. It is
also possible to start sftpg3 non-interactively with a batch file that contains the commands to be run. For
information on the available commands, see the section called “Commands”.

As an alternative to using the command line to set default values for various parameters, it is possible
to define the commands in a startup batch file that is run each time sftpg3 is started. By default, sftpg3
looks for a file named ssh_sftp_batch_file in the user-specific directory $HOME/.ssh2/ on Unix or
%APPDATA%\SSH\ on Windows.

sftpg3 has two connection end points, local and remote, and both of them can be connected to other
hosts than the SFTP client host. If started without arguments, the local end point is connected to the file
system of the SFTP client host and the remote end point is unconnected. The connected host(s), with the
exception of the SFTP client host, must be running a Secure Shell version 2 server with the sftp-server
(or sft-server-g3) subsystem enabled. Tectia Server has sft-server-g3 enabled by default.

The remote connection end point can be given directly as an argument to the sftpg3 command or it can
be given with the open SFTP command after sftpg3 has started. The local connection end point can be
given with the lopen SFTP command.

When connecting, you can give either the name of a connection profile defined in the ssh-broker-
config.xml file (profile) or the IP address or DNS name of the remote host, optionally with the remote
user name and the port of the Secure Shell server ([user@] host [#port] [:path]). If no user name is
given, the local user name is assumed. If no port is given, the default Secure Shell port 22 is assumed.
The path can be used to specify the initial working directory the sftpg3 will use. The host, port, username
etc. can also be given with sftp URL syntax. Using this format user password can also be provided.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

268 Appendix B Command-Line Tools and Man Pages

Note

When entering a connection profile in sftpg3, note that Tectia Client deduces the meaning of
the argument differently depending on its format. If there is an @ sign in the given attribute
value, Tectia Client always interprets it to be <username@hostname>, i.e. not a profile.

Also, if there are dots in a profile name (for example host.x.example.com, the dots need to
be escaped on command line. On Unix, enter host\.x\.example\.com, instead. On Windows,
enter host˜.x˜.example˜.com, instead. Otherwise the profile name is taken as a host name
and the current local user name is used for logging in.

For information on special characters in filenames, see the section called “Filename Support”.

Options

The following options are available:

-4

Defines that all connection-related DNS resolutions will be resolved as an IPv4 address.

-6

Defines that all connection-related DNS resolutions will be resolved as an IPv6 address.

-b buffer_size_bytes

Defines the maximum buffer size for one SFTP protocol read or write request (default: 32768 bytes).

The maximum number of SFTP protocol read or write requests sent in parallel within the transfer of
a single file can be specified with the -N option.

Note that when streaming (see --streaming) is used (as it is by default when transferring files larger
than buffer_size_bytes to/from Tectia Server), this option is not used for defining buffer sizes.

-B [- | batch_file]

The -B - option enables reading from the standard input. This option is useful when you want to
launch processes with sftpg3 and redirect the stdin pipes.

By defining the name of a batch_file as an attribute, you can execute SFTP commands from the
given file in batch mode. The file can contain any allowed SFTP commands. For a description of the
commands, see the section called “Commands”.

Using batch mode requires that you have previously saved the server host key on the client and set up
a non-interactive method for user authentication (for example, host-based authentication or public-
key authentication without a passphrase).

-C

Disables compression from the current connection.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

269

+C

Enables zlib compression for this particular connection.

-c, --ciphers= LIST

Sets the allowed ciphers to be offered to the server. List the cipher names in a comma-separated list.
For example:

--ciphers seed-cbc@ssh.com,aes256-cbc

Value any allows all supported algorithms. Enter help as the value to view the currently supported
cipher names.

-D, --debug= LEVEL

Sets the debug level. LEVEL is a number from 0 to 99, where 99 specifies that all debug information
should be displayed. This should be the first argument on the command line.

Note

Option -D only applies on Unix. On Windows, instead of this command-line tool, use the
Connection Broker debugging options -D, -l.

Note

The debug level can be set only when the sftpg3 command starts the Connection Broker.
This option has no effect in the command if the Connection Broker is already running.

-i FILE

Defines that private keys defined in the identification file are used for public-key authentication.

-K, --identity-key-file= FILE

Defines that the given key file of a private key or certificate is used in user authentication. The path
to the key file is given in the command.

If the file is a private key, it will be read and compared to the keys already known by the Connection
Broker key store. If the key is not known, it will be decoded and added to the key store temporarily.
If the file is a certificate and Connection Broker knows a matching private key, it will be used. Both
the certificate and the private key can be given using multiple -K options on command line.

-N max_requests

Defines the maximum number of SFTP protocol read or write requests sent in parallel (default: 10).

The size of the buffer used in each read or write request can be specified with the -b option.

Note that this value applies within the transfer of a single file; it cannot be used to define the number
of files sent in parallel.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

270 Appendix B Command-Line Tools and Man Pages

When streaming (see --streaming) is used (as it is by default when transferring files larger than
buffer_size_bytes specified with the -b option to/from Tectia Server), this option is not used.

-P port

Connects to this Secure Shell port on the remote machine (default: 22).

-q, --quiet

Suppresses the printing of error, warning, and informational messages. This option overrides the
quiet-mode setting made in the Connection Broker configuration file.

-v, --verbose

Uses verbose mode (equal to -D 2).

--aa, --allowed-authentications= METHODS

Defines the only allowed methods that can be used in user authentication. List the methods in a
comma-separated list. For example:

--allowed-authentications keyboard-interactive,password

Enter help as the value to view the currently supported authentication methods.

--any-alg

Allow any supported cipher, mac, kex, hostkey and publickey algorithm to be used.

--compressions= METHODS

Sets the allowed compression methods to be offered to the server. List the methods in a comma-
separated list.

Enter help as the value to view the currently supported compression methods.

--exclusive

Defines that a new connection will be opened for each connection attempt, otherwise Connection
Broker can reuse recently closed connections.

--fips

Performs the checksums using the FIPS cryptographic library.

--hostkey-algorithms= algorithms

Sets the allowed host key algorithms to be offered to the server. List the host key algorithms in a
comma-separated list. For example:

--hostkey-algorithms ssh-dss-sha224@ssh.com,ssh-dss-sha256@ssh.com

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

271

Value any allows all supported algorithms. Enter help as the value to view the currently supported
host key algorithms.

--identity= ID

Defines that the ID of the private key is used in user authentication. The ID can be Connection Broker-
internal ordinary number of the key, the key hash or the key file name.

--identity-key-hash= ID

Defines the private key used in user authentication with the corresponding public key hash.

--identity-key-id= ID

Defines that the Connection Broker-internal ordinary number of the key is used in user authentication.

--keep-alive= VALUE

Defines how often keep-alive messages are sent to the Secure Shell server. Enter the value as seconds.
The default value is 0, meaning that keep-alive messages are disabled.

--kexs= kexs

Sets the allowed key exchange (KEX) methods to be offered to the server. List the KEX names in
a comma-separated list. For example:

--kexs diffie-hellman-group14-sha224@ssh.com,diffie-hellman-group14-sha256@ssh.com

Value any allows all supported algorithms. Enter help as the value to view the currently supported
KEX methods.

--kip

Defines keyboard-interactive and password as the allowed methods for user authentication; the same
as

--allowed-authentications keyboard-interactive,password

--macs= LIST

Sets the allowed MACs to be offered to the server. List the MAC names in a comma-separated list.
For example:

--macs hmac-sha1-96,hmac-md5,hmac-md5-96

Value any allows all supported algorithms. Enter help as the value to view the currently supported
MAC names.

--password= PASSWORD | file:// PASSWORDFILE | extprog:// PROGRAM

Sets the user password or passphrase that the client will send as a response to an authentication method
requesting a password or passphrase (hereafter: password). This can be used also with password-
protected certificates and public-keys.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

272 Appendix B Command-Line Tools and Man Pages

The PASSWORD can be given directly as an argument to this option (not recommended).
Better alternatives are entering a path to a file containing the password (--password=file://
PASSWORDFILE), or entering a path to a program or script that outputs the password (--
password=extprog://PROGRAM).

When using the extprog:// option to refer to a shell script, make sure the script also defines the
user's shell, and outputs the actual password. Otherwise the executed program fails, because it does
not know what shell to use for the shell script. For example, if the password string is defined in a file
named my_password.txt, and you want to use the bash shell, include these lines in the script:

#!/usr/bash

cat /full/pathname/to/my_password.txt

Caution

Supplying the password on the command line is not a secure option. For example, in a multi-
user environment, the password given directly on the command line is trivial to recover from
the process table. You should set up a more secure way to authenticate. For non-interactive
batch jobs, it is more secure to use public-key authentication without a passphrase, or host-
based authentication. At a minimum, use a file or a program to supply the password.

--plugin-path= PATH

Sets plugin path to PATH. This is only used in the FIPS mode.

--publickey-algorithms= PUBLICKEY_ALGORITHMS

Allow only selected signature algorithms to be used in public key authentication. For example:

--publickey-algorithms=x509v3-ssh-rsa,rsa-sha2-512

Value any allows all supported algorithms. Enter help as the value to view the available signature
algorithms.

--tcp-connect-timeout= VALUE

Defines a timeout period (in seconds) for establishing a TCP connection to the Secure Shell server.
Enter a timeout value as a positive number. Value 0 (zero) disables this feature and the default system
TCP timeout will be used instead.

--template-profile profile

Use the specified profile when connecting.

-l, --user= USERNAME

USERNAME will be used in the logon if the user name is not specified in the address string.

-V, --version

Displays program version and exits.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

273

-h, --help, -?

Displays a short summary of command-line options and exits.

Commands

When sftpg3 is ready to accept commands, it will display the prompt sftp>. The user can then enter any
of the following commands:

! append ascii auto binary

break cd charset chmod close

continue debug delete digest echo

exit get getext help helpall

lappend lcd lcharset lchmod lclose

ldelete ldigest lls llsroots lmkdir

localopen locsite lopen lpwd lreadlink

lrename lrm lrmdir ls lsite

lsroots lsymlink mget mkdir mput

open pause put pwd quit

readlink rename rm rmdir set

setext setperm sget site sput

sunique symlink type verbose

! [command] [arguments]

Invokes an interactive shell on the local machine. if a command is given, it is used as the command to
be executed. Optional arguments can be given depending on the command.

append [-u, --unlink-source] [--streaming] [--force-lower-case] [--statistics] [--
summary-display] [--summary-format] [--progress-display] [--progress-line-format] [
--progress-line-interval] srcfile [dstfile]

Appends the specified local file to the remote file. No globbing can be used.

Options:

-u, --unlink-source

Removes the source file after file transfer.

--streaming [=yes | no | force | ext]

Uses streaming in file transfer if the server supports it. Files smaller than buffer_size_bytes
are not transferred using streaming. Use force with small files. Default: yes

Use ext with z/OS hosts to enable direct MVS data set access. Use this option only when the
file transfer is mainly used for mainframe data set transfers, as it can slow down the transfer of
small files in other environments.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

274 Appendix B Command-Line Tools and Man Pages

The --streaming=ext option requires also the --checksum=no option, because if checksums
are calculated, the file transfer uses staging, which excludes streaming.

--force-lower-case

Destination filename will be converted to lowercase characters.

The semantics of options --statistics, --summary-display, --summary-format, --progress-
display, --progress-line-format, and --progress-line-interval are the same as with get.

ascii [-s] [remote_nl_conv] [local_nl_conv]

Command ascii sets the transfer mode to ASCII.

For transfers between Tectia on z/OS and other hosts, this also enables automatic ASCII-EBCDIC
conversion. Default conversion is between code sets ISO8859-1 and IBM-1047. Files are transferred
using the LINE format. The site and lsite commands can be used to change the values.

If you enter the ascii command with any options, it does not set the transfer mode to ASCII, but
affects the newline conventions used in the transferred files. You can also set the server's newline
convention by using a host profile that specifies the host type. For more information, see the host-
type attribute in the section called “The profiles Element”.

Options:

-s

Shows the current newline convention. The line delimiters used in different systems are:

dos: CRLF (\r\n, 0x0d 0x0a)

mac: CR (\r, 0x0d)

mvs: NEL (\n, 0x15)

unix: LF (\n, 0x0a)

remote_nl_conv local_nl_conv

This syntax can be used to define the remote and local newline conventions. The local_nl_conv
option operates on the local end, but notice that usually the correct local newline convention is
already compiled in.

You can either set hints of the newline conventions for the underlying transfer layer, which by
default tries to use the actual newline convention given by the server, or alternatively you can
force the newline mode.

To set hints of the newline conventions, use these values in the remote_nl_conv and
local_nl_conv options: dos, unix, and mac. These settings will be used if the remote SSH
server does not automatically provide any newline information to the SFTP client. For example:

sftp> ascii

 File transfer mode is now ascii.

sftp> ascii unix dos

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

275

 Newline conventions updated.

To force the newline conventions, use these values: force-dos, force-unix, and force-mac.
These settings force the newline mode irrespective of what the remote SSH server suggests to
the SFTP client.

sftp> ascii

 File transfer mode is now ascii.

sftp> ascii force-unix force-dos

 Newline conventions updated.

You can also set either one of the options to ask, which will cause sftpg3 to prompt you for the
newline convention when needed.

auto

File transfer mode will be selected automatically from the file extension.

binary

Files will be transferred in binary mode.

break

Interrupts batch file execution. Batch file execution can be continued with the continue command.

bye

Quits the application.

cd directory

Changes the current remote working directory.

charset [-e esc] [-s] CHARSET
,

charset [--list]

Sets the file name charset client expects from the server and lists available character sets. The default
character set is UTF-8. Value 'none' will unset character set settings.

Options:

-e esc

Set the escape policy for characters that cannot be represented in the given charset. Options
include 'fail', 'escape', 'escape-u', 'escape-uplus' and 'escape-xml'. Last is the default value.

-s

With this option, the client will send the charset name to the server in filename-charser@ssh.com
extension to request for example UTF-8 to be used in case the connected server supports it.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

276 Appendix B Command-Line Tools and Man Pages

--list

List available file name character sets.

chmod [-R] [-f] [-v] OCTAL-MODE [file ...]
,

chmod [-R] [-f] [-v] [ugoa] [+-=] [rwxs] [file ...]

With Unix files, sets file permissions of the specified file or files to the bit pattern OCTAL-MODE or
changes the file permissions according to the symbolic mode [ugoa][+-=][rwxs].

Options:

-R

Recursively changes files and directories.

-f

Uses silent mode (error messages are suppressed).

-v

Uses verbose mode (lists every file processed).

close

Closes the remote connection.

continue

Continues interrupted batch file execution.

debug [disable | no | debuglevel]

Disables or enables debug. With disable or no, debugging is disabled. Otherwise, sets debuglevel
as debug level string, as per command-line option -D.

delete [-H, --hash] [-o, --offset] [-l, --length] file

Tries to delete a file or directory specified in file. The options are the same as for rm.

digest [-H, --hash] [-o, --offset] [-l, --length] file

Calculates MD5, SHA-1 or SHA-2 digest over file data. The digest is calculated over the data on the
disk. If any code or line delimiter conversion attributes are in effect, they are ignored when calculating
the digest.

Options:

-H, --hash= [alg]

Specify the hash algorithm. Support depends on server, values md5, sha1, sha256 and sha512
are commonly supported. (default: sha1).

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

277

-o, --offset= OFFSET

Start reading from file offset OFFSET.

-l, --length= LENGTH

Read LENGTH bytes of file data.

echo Text to be echoed.

Echo the text. This command can be used for example in batch mode to print text into batch logs.

exit

Quits the application.

get [-p, --preserve-attributes] [-u, --unlink-source] [-I, --interactive] [--overwrite
] [--checksum] [-W, --whole-file] [--checkpoint] [--streaming] [--force-lower-case] [
--prefix] [--statistics] [--summary-display] [--summary-format] [--progress-display]
[--progress-line-format] [--progress-line-interval] [--max-depth=] file ...

Transfers the specified files from the remote end to the local end. By default, directories are
recursively copied with their contents, but this is configurable in the Connection Broker with the
SFTP compatibility mode setting (sftpg3-mode in ssh-broker-config.xml configuration), with
the environment variable SSH_SFTP_CMD_GETPUT_MODE or the SFTP command set compatibility-
mode=mode). To view the currently set SFTP compatibility mode, run command:

sftp> set

The currently set compatibility mode is also shown in the beginning of the help for command help get.

The SFTP compatibility mode options are:

tectia

The sftpg3 client transfers files recursively from the current directory and all its subdirectories.

ftp

The get command is executed as sget meaning that it transfers a single file, and no subdirectories
are copied.

openssh

Only regular files and symbolic links from the specified directory are copied, and no
subdirectories are copied. Otherwise the semantics of the get command are unchanged.

Options:

-p, --preserve-attributes

Preserves the file permissions and the timestamps when both the source and the destination are
on Unix file systems (including z/OS USS). Preserves the timestamps but not the file permissions,

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

278 Appendix B Command-Line Tools and Man Pages

if either one, the source or the destination is on Windows. If the destination is on z/OS MVS,
none will be preserved.

-u, --unlink-source

Removes the source file after file transfer. Also directories are removed, if they become empty
(move mode).

-I, --interactive

Prompts whether to overwrite an existing destination file (does not work with batch mode).

--overwrite [=yes | no]

Decides whether to overwrite existing destination file(s) (default: yes).

--checksum [=yes | no | md5 | sha1 | sha256 | sha512 | md5-force | sha1-force | sha256-
force | sha512-force | checkpoint]

Uses MD5, SHA-1 or SHA-2 checksums or a separate checkpoint database to determine the
point in the file where file transfer can be resumed. Files smaller than buffer_size_bytes are
not checked unless forced, i.e. sha1-force. (default: yes, uses SHA-1 checksums in FIPS mode,
MD5 checksums otherwise). Use checkpointing when transferring large files one by one.

-W, --whole-file

Does not try incremental checks. By default (if this option is not given), incremental checks are
tried. This option can only be used together with the --checksum option.

--checkpoint=s <seconds>

Time interval between checkpoint updates (default: 10 seconds). This option can only be used
when --checksum=checkpoint.

--checkpoint=b <bytes>

Byte interval between checkpoint updates (default: 10 MB). This option can only be used when
--checksum=checkpoint.

--streaming [=yes | no | force | ext]

Uses streaming in file transfer if the server supports it. Files smaller than buffer_size_bytes
are not transferred using streaming. Use force with small files. Default: yes

Use ext with z/OS hosts to enable direct MVS data set access. Use this option only when the
file transfer is mainly used for mainframe data set transfers, as it can slow down the transfer of
small files in other environments.

The --streaming=ext option requires also the --checksum=no option, because if checksums
are calculated, the file transfer uses staging, which excludes streaming.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

279

An alternative way to activate extended streaming is to define SSH_SFTP_STREAMING_MODE=ext
and SSH_SFTP_CHECKSUM_MODE=no as environment variables.

--force-lower-case

Destination file name will be converted to lower case characters.

--max-depth= VALUE

Defines whether directories are copied recursively. The value can be:

0 - unlimited recursion, directories are recursively copied with their contents

1 - copies files from the specified directory only, not from subdirectories

2-n - copies files recursively from the specified number of directory levels. Here n means the
system-specific maximum.

This command line option overrides the recursion depth set in the Connection Broker
configuration with element sftpg3-mode and/or the setting made using environment variable
SSH_SFTP_CMD_GETPUT_MODE.

--prefix= PREFIX

Adds prefix PREFIX to filename during the file transfer. The prefix is removed after the file has
been successfully transferred.

On z/OS, when applied to MVS data set names, the prefix will be inserted after the High Level
Qualifier (HLQ) by default. In case you want the prefix to be a separate qualifier, include a dot
at the end of the prefix:

--prefix=PREFIX.

--statistics [=no | yes | simple]

Note

In release 6.1.5, the behavior of the --statistics option has changed and the --
statistics-format option has been removed. Instead of them, use the new --
summary-display and --summary-format options.

The --statistics option chooses the style of the statistics to be shown after a file transfer
operation. Note that --statistics and --summary-display must not be used together.

The --statistics option takes the following values:

no - no statistics will be created.

yes - shows a progress bar during the file transfer. This is the default. An example of the output:

sftp> get --statistics="yes" sourcefile

sourcefile | 127MB | 42.9MiB/s | TOC: 00:00:03 | 100%

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

280 Appendix B Command-Line Tools and Man Pages

simple - simple one-line statistics will be displayed after the file transfer has ended. For example:

sftp> get --statistics=simple testfile

sourcefile | 127MB | 151.3MiB/s | TOC: 00:00:00 | 100%

--summary-display [=no | yes | simple | bytes]

Chooses the style of the file transfer summary data to be displayed after a file transfer operation.
With the summary display, the progress bar data is also displayed by default.

Note that --summary-display and --statistics must not be used together.

The --summary-display option takes the following values:

no - no summary data will be created. This is the default.

yes - detailed summary data will be created. You can configure the contents with the summary-
format option. By default, the following contents are displayed in the summary:

Default settings: Render for example this:

"Source: %c:%g\n" user@host1#22:/path/to/source/file

"Source parameters: %e\n" X=TEXT, C=ISO8859-1,D=IBM.1047

"Destination: %C:%G\n" user@host2#22:/path/to/destination/file

"Destination parameters: %E\n" NONE

"File size: %s bytes\n" 123456 bytes

"Transferred: %t bytes\n" 123456 bytes

"Rate: %RB/s\n" 345kiB/s

"Start: %xy-%xt-%xd %xh:%xm:%xs\n" 2010-01-26 13:10:56

"Stop: %Xy-%Xt-%Xd %Xh:%Xm:%Xs\n" 2010-01-26 13:23:30

"Time: %y\n" 00:12:34

simple - simple one-line summary will be displayed. For example:

sftp> get --summary-display=simple sourcefile

sourcefile | 127MB | 151.3MiB/s | TOC: 00:00:00 | 100%

bytes - basic statistics reporting the transferred bytes will be displayed. For example:

sftp> get --summary-display=bytes sourcefile

Transferred 12915145984 bytes, file: 'sourcefile' -> 'destinationfile'

--summary-format= FORMAT_STRING

Chooses the format and the contents of the summary. You can use this option when --summary-
display=yes. Do not use this option with --statistics.

Select the contents for the summary using the following definitions:

%c - source connection: user@host#port or profile

%C - destination connection: user@host#port or profile

%D* - current date

%e - source parameters (file transfer and data set parameters)

%E - destination parameters (file transfer and data set parameters)

%f - source file name

%F - destination file name

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

281

%g - /path/to/source/file

%G - /path/to/destination/file

%k - compression done ("zlib" or "none")

%p - transfer percentage

%q - transfer rate in bit/s

%Q - transfer rate as "XXyb/s" (b/s, kib/s, Mib/s, Gib/s)

%r - transfer rate in bytes/s

%R - transfer rate as "XXyB/s" (B/s, kiB/s, MiB/s, GiB/s)

%s - file size in bytes

%S - file size as "XXyB" (B, kiB, MiB or GiB)

%t - transfer size in bytes

%T - transfer size as "XXyB" (B, kiB, MiB or GiB)

%x* - start date

%X* - end date

%y - elapsed time

%Y - time remaining

%z - ETA or TOC, if transfer has finished

%Z - string "ETA" or "TOC", if transfer has finished

Where * is one of the following:

h - hours (00-23)

m - minutes (00-59)

s - seconds (00-59)

f - milliseconds (0-999)

d - day of the month (1-31)

t - month (1-12)

y - year (1970-)

Other special characters in format strings are:

\n - line feed

\r - carriage return

\t - horizontal tab

\\ - backslash

--progress-display [=no | bar | line]

Chooses the mode of displaying the progress during a file transfer operation. The default is bar,
which shows a progress bar. Option line shows the progress information according to the settings
made in the --progress-line-format option.

Do not use this option with --statistics.

--progress-line-format= FORMAT_STRING

Chooses what information will be shown on the progress line. You can use this option when --
progress-display=line.

Do not use this option with --statistics.

Select the contents for the progress line using the definitions described for option --summary-
format of the get command above.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

282 Appendix B Command-Line Tools and Man Pages

--progress-line-interval= seconds

Defines how often the progress information is updated in the line mode. The interval is given
in seconds, and the default is 60 seconds.

Do not use this option with --statistics.

getext

Displays the extensions that will be ASCII in the auto transfer mode.

lappend [options ...] srcfile [dstfile]

The same as append, but appends the specified remote file to the local file.

lcd directory

Changes the current local working directory.

lcharset [-e fail | escape | escape-u | escape-uplus | escape-xml] CHARSET
,

lcharset [--list]

The same as charset, but sets expected charset for local files.

lchmod [-R] [-f] [-v] OCTAL-MODE [file ...]
,

lchmod [-R] [-f] [-v] [ugoa] [+-=] [rwxs] [file ...]

The same as chmod, but operates on local files.

lclose

Closes the local connection.

ldelete [options ...] file ...

The same as delete, but operates on local files.

ldigest [-H, --hash] [-o, --offset] [-l, --length] file

The same as digest, but operates on local files.

lls [-R] [-l] [-S] [-r] [-p] [-z|+z] [file ...]

The same as ls, but operates on local files.

llsroots

The same as lsroots, but operates on local files (when the local end has been opened to a VShell
server).

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

283

lmkdir directory

The same as mkdir, but operates on local files.

localopen [user@] hostname [#port] [-l] [--user= USERNAME]

The same as lopen.

lopen [user@] hostname [#port] [-l] [--user= USERNAME]

Tries to connect the local end to the host hostname. If this is successful, lls and friends will operate
on the file system on that host.

Options:

-l

Connects the local end to the file system of the SFTP client host (which does not require a server).
This is also the default state when no lopen commands have been given.

--user

Defines the user in the connection to be USERNAME.

locsite [none | name1=value1 name2=value2 ...]

The same as site, but operates on local files and data sets.

lpwd

Prints the name of the current local working directory.

lreadlink path

The same as readlink, but operates on local files.

lrename oldfile newfile

The same as rename, but operates on local files.

lrm [options ...] file ...

The same as rm, but operates on local files.

lrmdir directory

The same as rmdir, but operates on local files.

ls [-R] [-l] [-S] [-r] [-p] [-z|+z] [file ...]

Lists the names of files on the remote server. For directories, contents are listed. If no arguments are
given, the contents of the current working directory are listed.

Options:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

284 Appendix B Command-Line Tools and Man Pages

-R

Directory trees are listed recursively. By default, subdirectories of the arguments are not visited.

-l

Permissions, owners, sizes and modification times are also shown (long format).

-S

Sorting is done based on file sizes (default: alphabetical sorting).

-r

The sort order is reversed.

-p

Only one page of listing is shown at a time.

-z

The client generates the long output.

+z

The long output supplied by the server is used, if available (alias for option -l).

lsite [none | name1=value1 name2=value2 ...]

The same as site, but operates on local files and data sets.

lsroots

Dumps the virtual roots of the server. (This is a VShell extension. Without this you cannot know the
file system structure of a VShell server.)

lsymlink targetpath linkpath

The same as symlink, but operates on local files.

mget [options ...] file ...

Synonymous to get, except for the SFTP compatibility mode option ftp. The SFTP compatibility
mode options for command mget:

tectia

The sftpg3 client transfers files recursively from the current directory and all its subdirectories.

ftp, openssh

Directories are not copied. Only regular files and symbolic links are copied.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

285

mkdir directory

Tries to create the directory specified in directory.

mput [options ...] file ...

Transfers the specified files from the local end to the remote end. Options and semantics are the same
as for mget, otherwise synonymous to put.

open [user@] hostname [#port] [-l] [--user= USERNAME]

Tries to connect the remote end to the host hostname.

Options:

-l

Connects the remote end to the file system of the SFTP client host (which does not require a
server).

--user

Defines the user in the connection to be USERNAME.

pause [seconds]

Pauses batch file execution for seconds seconds, or if seconds is not given until ENTER is pressed.

put [options ...] file ...

Transfers the specified files from the local end to the remote end. Options and semantics are the
same as for get.

pwd

Prints the name of the current remote working directory.

quit

Quits the application.

readlink path

Provided that path is a symbolic link, shows where the link is pointing to.

rename oldfile newfile

Tries to rename the oldfile to newfile. If newfile already exists, the files are left intact.

rm [-I, --interactive] [-r, --recursive] file ...

Tries to delete a file or directory specified in file.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

286 Appendix B Command-Line Tools and Man Pages

Options:

-I, --interactive

Prompts whether to remove a file or directory (does not work with batch mode).

-r, --recursive

Directories are removed recursively.

rmdir directory

Tries to delete the directory specified in directory. This command removes the directory only if it
is empty and has no subdirectories.

set [defaults | [--commands=name1,name2,... exit-value=VALUE] | option1=value1

option2=value2 ...]

Sets the default values for various parameters. The set command takes the following options:

defaults

Sets the parameters to be system defaults.

checksum [=yes | no | md5 | sha1 | md5-force | sha1-force | checkpoint]

Uses MD5 or SHA-1 checksums or a separate checkpoint database to determine the point in the
file where file transfer can be resumed. Files smaller than buffer_size_bytes are not checked.
Use md5-force or sha1-force with small files. The default is md5 (in z/OS the default is no).
Use checkpointing when transferring large files one by one.

compatibility-mode [=tectia | ftp | openssh]

Defines what mode of recursiveness is used in the file transfer:

tectia

The sftpg3 client transfers files recursively from the current directory and all its
subdirectories. This is the default mode.

ftp

A single file is transferred, and no subdirectories are copied.

openssh

Only regular files and symbolic links from the specified directory are copied, and no
subdirectories are copied.

compressions [=none | zlib]

Defines whether compression is used in file transfer:

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

287

none

Compression is not used. This is the default.

zlib

Enables zlib compression in file transfer.

 exit-value= VALUE

Defines the exit value of sftpg3 in batch mode in case of an error. The value must be between
0 and 255. If exit-value is set to something else than 0 and the --commands parameter is not
used, batch execution terminates when the first error occurs.

Example 1: If the rename command in this batch job fails, sftpg3 will stop and return exit value
"6":

open user@host

set exit-value=6

rename file file2

<next command in batch job>

quit

Example 2: If you want to ignore a possible failure of a specific command and return exit value
"0" independent of the actual result of the operation, use set exit-value=0 after the command.
This example batch job ignores possible failure in renaming a file:

open user@host

rename file file2

set exit-value=0

<next command in batch job>

quit

--commands= name1,name2,... exit-value= VALUE

This option makes an sftpg3 batch job abort when any of the specified commands fail. When
a command that is not specified with this option fails, the batch job execution continues,
and the exit value of the batch job is set to the one defined with exit-value. Note that if
exit-value=0, the exit value of the failed command will be returned.

Example 3: When sftpg3 is running in batch mode, it will abort execution if a put, get,
or ls command fails. If any other command (with the exceptions mentioned below) fails,
execution will continue until the end of the batch file. In both cases value "3" will be
returned:

set --commands=put,get,ls exit-value=3

Example 4: When sftpg3 is running in batch mode, it will abort execution when a put
or get command fails. If any other command (with the exceptions mentioned below) fails,
execution will continue. In any case the original exit value of the last failed command will
be returned:

set --commands=put,get exit-value=0

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

288 Appendix B Command-Line Tools and Man Pages

Exceptions: When exit-value is set for specific commands with the --commands option,
also the following situations will cause the batch job execution to abort:

• A cd command resulting in an error

• Any invalid command

• Authentication failed error

• Unable to connect to server error

• Connection aborted error

By default (set defaults), in case of errors, sftpg3 does not stop but instead will continue
executing and return the last error message.

Invalid commands added in --commands will be ignored.

overwrite [=yes | no]

Decides whether to overwrite existing destination file(s) (default: yes).

progress-display [=bar | line | no]

Chooses the mode of displaying the progress during a file transfer operation. The default is bar,
which shows a progress bar. Option line shows the progress information according to the settings
made with the progress-line-format option. Option no disables progress display.

progress-line-format= FORMAT_STRING

Chooses what information will be shown on the progress line. Use this option when --
progress-display=line. See the definitions of contents options in command: get --

progress-line-format.

progress-line-interval= seconds

Defines how often the progress information is updated in line mode. The interval is given in
seconds, and the default is 60 seconds.

summary-display [=no | yes | simple | bytes]

Chooses the style of the file transfer summary data to be displayed after a file transfer operation.
With the summary display, the progress bar data is also displayed by default. Do not use this
option with --statistics.

See the options described for command: get --summary-display

summary-format= FORMAT_STRING

Chooses the format and the contents of the summary. You can use this option when --summary-
display=yes. Do not use this option with --statistics.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

289

See the definitions of contents options in command: get --summary-format

streaming [=yes | no | force | ext]

Uses streaming in file transfer if the server supports it. Files smaller than buffer_size_bytes
are not transferred using streaming. Use force with small files. Default: yes

Use ext with z/OS hosts to enable direct MVS data set access. Use this option only when the
file transfer is mainly used for mainframe data set transfers, as it can slow down the transfer of
small files in other environments.

The streaming=ext option requires also the checksum=no option, because if checksums are
calculated, the file transfer uses staging, which excludes streaming.

setext [extension ...]

Sets the file extensions that will be ASCII in the auto transfer mode. Normal zsh-fileglob regexps
can be used in the file extensions.

setperm fileperm [:dirperm]

Sets the default file or directory permission bits for upload. (Prefix fileperm with p to preserve
permissions of existing files or directories.)

sget [options ...] srcfile [dstfile]

Transfers a single specified file from the remote end to the local end under the filename defined with
dstfile. Directories are not copied. No wildcards can be used. Options are the same as for get.

site [none | name1=value1 name2=value2 ...]

Sets the file and data set parameters for the remote host. Parameters can be entered either one by one,
or several parameters can be delimited by spaces or commas. Both long parameters and abbreviations
can be used. When run without arguments, the site command outputs the list of entered parameters.
Setting none resets all parameters.

The available parameters are:

• AUTOMOUNT=YES|NO|IMMED

• [NO]AUTOMOUNT|[NO]AUTOM

• AUTORECALL=YES|NO

• [NO]AUTORECALL|[NO]AUTOR

• BLKSIZE|B|BLOCKSI= size

• BLOCKS|BL

• CONDDISP|CO=CATLG|UNCATLG|KEEP|DELETE

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

290 Appendix B Command-Line Tools and Man Pages

• CYLINDERS|CY

• DATACLAS|DA= class

• DATASET_SEQUENCE_NUMBER|SEQNUM= number

• DEFER|DE=YES|NO

• [NO]DEFER|DE

• DIRECTORY_SIZE|M|DI|DIRSZ= size

• EXPIRY_DATE|EXPDT= yyddd|yyyyddd

• FILE_STATUS|STATUS=NEW|MOD|SHR|OLD

• FILETYPE|FILET=SEQ|JES

• FIXRECFM|FI= length

• JOB_ID|JESID= ID

• JOB_OWNER|JESO= name

• JOBNAME|JESJOB= name

• KEYLEN|KEYL= length

• KEYOFF|KEYO= offset

• LABEL_TYPE|LABEL=NL|SL|NSL|SUL|BLP|LTM|AL|AUL

• LIKE= like

• LRECL|R|LR= length

• MGMTCLAS|MG= class

• NORMDISP|NOR=CATLG|UNCATLG|KEEP|DELETE

• PRIMARY_SPACE|PRI= space

• PROFILE|P|PROF= profile

• RECFM|O|REC= recfm

• RECORD_TRUNCATE|U|TRUN=YES|NO

• [NO]TRUNCATE|[NO]TRU|[NO]TRUN

• RETENTION_PERIOD|RET= days

• SECONDARY_SPACE|SE|SEC= space

• SIZE|L= size

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

291

• SPACE_RELEASE|RLSE=YES|NO

• SPACE_UNIT|SU=BLKS|TRKS|CYLS|AVGRECLEN

• SPACE_UNIT_LENGTH|SUL= length

• STAGING|S|STAGE=YES|NO

• STORCLAS|ST= class

• SVC99_TEXT_UNITS|SVC99= string

• TRACKS|TR

• TRAILING_BLANKS|TRAIL=YES|NO

• [NO]TRAILINGBLANKS|[NO]TRAI|[NO]TRAIL

• TRANSFER_CODESET|C|CODESET= codeset

• TRANSFER_FILE_CODESET|D|FCODESET= codeset

• TRANSFER_FILE_LINE_DELIMITER|J|FLDELIM=UNIX|MVS|MVS-FTP|DOS|MAC|NEL

• TRANSFER_FORMAT|F|FORMAT=LINE|STREAM|RECORD

• TRANSFER_LINE_DELIMITER|I|LDELIM=UNIX|MVS|MVS-FTP|DOS|MAC|NEL

• TRANSFER_MODE|X|MODE=BIN|TEXT

• TRANSFER_TRANSLATE_DSN_TEMPLATES|A|XDSNT= templates

• TRANSFER_TRANSLATE_TABLE|E|XTBL= table

• TYPE|T=PS|PO|PDS|POE|PDSE|GDG|HFS|VSAM|ESDS|KSDS|RRN

• UNIT|UN= unit

• UNIT_COUNT|UC|UNC= number

• UNIT_PARALLEL|UNP=YES|NO

• VOLUME_COUNT|VC|VOLCNT= number

• VOLUMES|VO|VOL= vol1+vol2+...

sput [options ...] srcfile [dstfile]

Transfers a single specified file from the local end to the remote end under the filename defined with
dstfile. Directories are not copied. No wildcards can be used. Options are the same as for get.

sunique [on] [off]

Stores files with unique names. If no option is specified, the command toggles the state of 'sunique'.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

292 Appendix B Command-Line Tools and Man Pages

In case more than one of the transferred files have the same name, this feature adds a sequential
number to the end of the repeated filename, for example: file.name, file.name1, and file.name2.

symlink targetpath linkpath

Creates symbolic link linkpath, which will point to targetpath.

type [ascii | auto | binary | default]

Sets file transfer type. If type is not specified, the current file transfer type is displayed.

ascii

Transfer file in ascii mode. See ascii for more information.

auto

Transfer file in auto mode. See auto for more information.

binary

Transfer file in binary mode. See binary for more information.

default

Transfer file in binary mode. This mode is identical to binary except that when the server is
Tectia Server for IBM z/OS, no extra parameters are specified for the server. See binary for
more information.

verbose

Enables verbose mode (identical to the debug 2 command). You may later disable verbose mode by
debug disable.

help [topic]

If topic is not given, lists the available topics. If topic is given, outputs available online help about
the topic.

helpall

Outputs available online help about all topics.

Command Interpretation

sftpg3 understands both backslashes (\) and quotation marks ("") on the command line. A backslash can
be used for ignoring the special meaning of any character in the command-line interpretation. It will be
removed even if the character it precedes has no special meaning.

When specifying filenames that contain spaces, enclose them in quotation marks.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

293

Note

Commands get . and put . will get or put every file in the current directory and possibly they
overwrite files in your current directory.

sftpg3 supports wildcard characters (also known as glob patterns) given to commands chmod, lchmod,
ls, lls, rm, lrm, get, and put.

Command-Line Editing (Unix)

On Unix, the following key sequences can be used for command-line editing:

Ctrl-Space

Set mark.

Ctrl-A

Go to the beginning of the line.

Ctrl-B

Move the cursor one character to the left.

Ctrl-D

Erase the character to the right of the cursor, or exit the program if the command line is empty.

Ctrl-E

Go to the end of the line.

Ctrl-F

Move the cursor one character to the right.

Ctrl-H

Backspace.

Ctrl-I

Tab.

Ctrl-J

Enter.

Ctrl-K

Delete the rest of the line.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

294 Appendix B Command-Line Tools and Man Pages

Ctrl-L

Redraw the line.

Ctrl-M

Enter.

Ctrl-N

Move to the next line.

Ctrl-P

Move to the previous line.

Ctrl-T

Toggle two characters.

Ctrl-U

Delete the line.

Ctrl-W

Delete a region (the region's other end is marked with Ctrl-Space).

Ctrl-X

Begin an extended command.

Ctrl-Y

Yank deleted line.

Ctrl-_

Undo.

Ctrl-X Ctrl-L

Lower case region.

Ctrl-X Ctrl-U

Upper case region.

Ctrl-X Ctrl-X

Exchange cursor and mark.

Ctrl-X H

Mark the whole buffer.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

295

Ctrl-X U

Undo.

Esc Ctrl-H

Backwards word delete.

Esc Delete

Backwards word delete.

Esc Space

Delete extra spaces (leaves only one space).

Esc <

Go to the beginning of the line.

Esc >

Go to the end of the line.

Esc @

Mark current word.

Esc A

Go back one sentence.

Esc B

Go back one word.

Esc C

Capitalize current word.

Esc D

Delete current word.

Esc E

Go forward one sentence.

Esc F

Go forward one word.

Esc K

Delete current sentence.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

296 Appendix B Command-Line Tools and Man Pages

Esc L

Change current word to lower case.

Esc T

Transpose words.

Esc U

Change current word to upper case.

Delete

Backspace.

Filename Support

Different operating systems allow different character sets in filenames. On Unix, some of the special
characters are allowed in filenames, but on Windows, the following characters are not allowed:

\/ : * ? " < > |

The sftpg3 command-line tool (both as an interactive and in a batch file) follows the syntax and semantics
of Unix shell command-line also on the Windows platform, except that the escape character is ~ (tilde).

When you transfer files that have special characters in the filename (for example unixfilename*?".txt)
from a Unix server to Windows, you need to provide the files with new names that are acceptable on
Windows.

The sftpg3 command-line client includes two versions of the get command:

The get command can be used to transfer several files at the same time, but it is not possible to define
target filenames. Note that if there are special characters in the filenames, you need to rename the
files already on Unix so that the names are acceptable also on Windows.

The sget command is used to transfer one file at a time, and it allows you to define a new name
for the destination file. Use it to make the name acceptable on Windows. The command sequence
is as follows:

$ sftpg3

sftp> open user@server

sftp> sget "file*name.txt" windowsfilename.txt

Escaping special characters

In the sftpg3 command, the following characters have a special meaning, and they need to be escaped in
commands that take filenames as arguments:

* asterisk is a wildcard character for any number of any characters

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

297

? question mark is a wildcard for any single character

"" quotation marks are placed around strings that are to be taken 'as is'

\ backslash is an escape character on Unix

~ tilde is an escape character on Windows

The escape character tells the sftpg3 command to treat the next character "as is" and not to assume any
special meaning for it. The escape character is selected according to the operating system of the local
machine.

Note that the \ and ~ characters are special characters themselves, and if they are present in the filename, an
escape character must be placed in front of them,too. Therefore, if you need to enter a filename containing
\ in Unix or ~ in Windows to any of the sftpg3 commands, add the relevant escape character to it:

\\ on Unix

~~ on Windows

When a filename or part of a filename is placed within the quotation marks "", the sftpg3 command
interprets the quoted part 'as is', and none of the characters within the quote are interpreted as wildcards
or as any other special characters.

However, on Unix a quotation mark " can also be part of a filename. If you need to enter the " character
in a filename, you must add the escape character in front of it both on Unix and on Windows.

For example, to enter a file named file-"name".txt into a command on Windows, enter the following
command:

sftp> sget "file-~"name~".txt" filename.txt

See the examples below to learn how the escape characters are used in the Tectia sftpg3 commands, and
how to enter filenames with special characters in different operating systems.

Examples of filenames in the sftpg3 commands:

The following filenames are valid in Unix, but they need escape characters in the commands:

file|name.txt

file-"name".txt

file?name.txt

file*name.txt

file\name.txt

file - name.txt

file~name.txt

When using the sftpg3 command-line tool on Unix, enter the above mentioned filenames in the
following formats:

file\|name.txt or "file|name.txt"

file-\"name\".txt or "file-\"name\".txt"

file\?name.txt or "file?name.txt"

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

298 Appendix B Command-Line Tools and Man Pages

file*name.txt or "file*name.txt"

file\\name.txt or "file\\name.txt"

file\ -\ name.txt or "file - name.txt"

file~name.txt or "file~name.txt"

Example commands on Unix:

sftp> get "file*name.txt"

sftp> sget "file*name.txt" newfilename.txt

When using the sftpg3 command on Windows, enter the above mentioned Unix filenames in the
following formats:

file~|name.txt or "file|name.txt"

file-~"name~".txt or "file-~"name~".txt"

file~?name.txt or "file?name.txt"

file~*name.txt or "file*name.txt"

file~\name.txt or "file\name.txt"

file~ -~ name.txt or "file - name.txt"

file~~name.txt or "file~~name.txt"

Example command sequence on Windows:

> sftpg3 open user@server

sftp> get "file name.txt"

sftp> sget "file*name.txt" filename.txt

Environment Variables

sftpg3 uses the following environment variables:

SSH_SFTP_BATCH_FILE=startup_batch_file

Defines the path to the sftpg3 startup batch file. The file is run and the sftpg3 commands defined
in the file are executed each time sftpg3 is started.

If this variable is not defined, sftpg3 looks for a startup batch file named ssh_sftp_batch_file in
the user-specific directory $HOME/.ssh2/ on Unix or %APPDATA%\SSH\ on Windows.

Note that if this variable is defined but the file is missing or cannot be accessed, sftpg3 fails to start.

SSH_SFTP_CHECKSUM_MODE =yes|no|md5|sha1|sha256|sha512|md5-force|sha1-force|

sha256-force|sha512-force|checkpoint

Defines the setting for comparing checksums. For more information on the available values, see
checksum .

SSH_SFTP_SHOW_BYTE_COUNT =yes|no

If this variable is set to yes, the number of transferred bytes is shown after successful file transfer.
Also the names of source and destination files are shown. The default is no.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

299

SSH_SFTP_STATISTICS =yes|no|simple

If this variable is set to yes (default), normal progress bar is shown while transferring the file. If it
is set to no, progress bar is not shown. If it is set to simple, file transfer statistics are shown after
the file has been transferred.

UTF8_MODE =0|1

If this variable is set to 0, the default charset mode UTF-8 is disabled. To force UTF-8 charset mode
for file names, set the variable to 1.

Exit Values

sftpg3 returns the following values based on the result of the operation:

0 Operation was successful.

1 Internal error.

2 Connection aborted by the user.

3 Destination is not a directory, but a directory was specified by the user.

4 Connecting to the host failed.

5 Connection lost.

6 File does not exist.

7 No permission to access file.

8 Undetermined error from sshfilexfer.

11 Some non-fatal errors occured during a directory operation.

101 Wrong command-line arguments specified by the user.

In batch mode, sftpg3 returns the value 0 only if no errors occurred during the execution. A failure to
change the current working directory, a failure to establish a connection, or a connection loss during batch
operation cause sftpg3 to abort. Other errors are reported to stderr and the last error value is returned as
the exit value of the sftpg3 process.

Examples

Open a sftpg3 session with the remote end connected to the server defined in the connection profile
profile1 in the ssh-broker-config.xml file (the local end is initially connected to the file system of
the SFTP client host):

$ sftpg3 profile1

Run sftpg3 in batch mode:

$ sftpg3 -B batch.txt

Example contents of the batch file batch.txt are shown below. Non-interactive authentication methods
are used and the server host keys have been stored beforehand:

lopen user@unixserver.example.com

open user@winserver.example.com

binary

lcd backup

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

300 Appendix B Command-Line Tools and Man Pages

cd c:/temp

get --force-lower-case Testfile-X.bin

lchmod 700 testfile-x.bin

digest -H sha256 Testfile-X.bin

ldigest -H sha256 testfile-x.bin

quit

The example batch file opens the local end of the connection to a Unix server and the remote end to a
Windows server, and sets the transfer mode to binary. It changes to local directory backup and remote
directory C:\Temp, and copies a file from the remote directory to the local directory. The filename is
changed to lower-case characters (testfile-x.bin). After transfer, the file permissions are changed to
allow the user full rights and others no rights, and additional SHA-2 hash are calculated of the source and
destination files for further verification.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

301

ssh-translation-table
ssh-translation-table — Secure Shell Translation Table

Synopsis

ssh-translation-table [options ...]
[filename]

Description

ssh-translation-table (ssh-translation-table.exe on Windows) is a utility program that generates
translation tables for coded character set (CCS) conversions. ssh-translation-table stores the translation
table in filename. If filename is not given, ssh-translation-table writes the translation table to standard
output.

Options

The following options are available:

-b, --binary

Use the z/OS-specific binary file format.

-f, --from= CODESET

Specify the source code set of the inbound conversion, which is also the target code set of the
outbound conversion. The default value is ISO8859-1. For example:

--from ISO8859-15

-t, --to= CODESET

Specify the target code set of the inbound conversion, which is also the source code set of the
outbound conversion. The default value is IBM-1047,swaplfnl if the underlying implementation is
ICU, otherwise IBM-1047. For example:

--to IBM-037

-l, --list-charsets

List available character sets. Note that all character sets are not single byte character sets. Only single
byte character sets can be used.

-D, --debug= LEVEL

Sets the debug level. LEVEL is a number from 0 to 99, where 99 specifies that all debug information
should be displayed. This should be the first argument on the command line.

-h, --help

Displays a short summary of command-line options and exits.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

302 Appendix B Command-Line Tools and Man Pages

Translation Table

A translation table is a file containing two tables describing the character conversion, the inbound table
and the outbound table. Each table consists of 256 target values.

In Tectia File Transfer, the inbound table is used when converting data from the line to the data set. The
outbound table is used when converting data from a file and sending the data out on the line.

The binary format, which is z/OS specific, consists of three 256 byte fields. The first is a comment in
EBCDIC, which is ignored in the conversion software, the second is the inbound table and the third is
the outbound table.

The text format can have interspersed comments. The target values are in hexadecimal.

A table is a list of 256 values represented as two hexadecimal characters (from 00 to FF). The position
of the value is the index for conversion. The first position, i.e. position 00, represents the converted value
for byte value of 0.

The hexadecimal values in the tables are case-insensitive. So values 0a and 0A are the same. Also, it is
possible to add comments into the file. The comment starts with character '#'. Everything after that until
end of line is treated as comment and ignored. Also all white spaces are ignored.

Note

Only single byte translations are supported with translation tables.

Here is an example translation table generated with command ssh-translation-table:

SSH TRANSLATION TABLE FILE FORMAT VERSION 1.0

##

#

This file is an example translation table that can be used to

translate data from 'ISO8859-1' to 'IBM-1047,swaplfnl' while reading

from a file or from 'IBM-1047,swaplfnl' to 'ISO8859-1' while writing

to a file.

#

The format of translation table file is following:

#

- White spaces are ignored.

- Everything after '#' character until end of line is a comment

that is ignored.

- The first table is used when writing data to a file.

- The second table is used when reading data from a file.

- Both tables must exist.

- Table is a simple hexadecimal representation of the

translation. Each value is represented as two hexadecimal

characters. The first line gives the values in table

positions 0-15 (00-0F), the second line 16-31 (10-1F)

and so on.

#

Note: Only single byte translations are supported.

#

###

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

303

Inbound (network to file) translation table:

IBM-1047,swaplfnl -> ISO8859-1

#0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F

000102039C09867F978D8E0B0C0D0E0F #0

101112139D0A08871819928F1C1D1E1F #1

808182838485171B88898A8B8C050607 #2

909116939495960498999A9B14159E1A #3

20A0E2E4E0E1E3E5E7F1A22E3C282B7C #4

26E9EAEBE8EDEEEFECDF21242A293B5E #5

2D2FC2C4C0C1C3C5C7D1A62C255F3E3F #6

F8C9CACBC8CDCECFCC603A2340273D22 #7

D8616263646566676869ABBBF0FDFEB1 #8

B06A6B6C6D6E6F707172AABAE6B8C6A4 #9

B57E737475767778797AA1BFD05BDEAE #A

ACA3A5B7A9A7B6BCBDBEDDA8AF5DB4D7 #B

7B414243444546474849ADF4F6F2F3F5 #C

7D4A4B4C4D4E4F505152B9FBFCF9FAFF #D

5CF7535455565758595AB2D4D6D2D3D5 #E

30313233343536373839B3DBDCD9DA9F #F

Outbound (file to network) translation table:

ISO8859-1 -> IBM-1047,swaplfnl

#

#0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F

00010203372D2E2F1605150B0C0D0E0F #0

101112133C3D322618193F271C1D1E1F #1

405A7F7B5B6C507D4D5D5C4E6B604B61 #2

F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F #3

7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6 #4

D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D #5

79818283848586878889919293949596 #6

979899A2A3A4A5A6A7A8A9C04FD0A107 #7

202122232425061728292A2B2C090A1B #8

30311A333435360838393A3B04143EFF #9

41AA4AB19FB26AB5BBB49A8AB0CAAFBC #A

908FEAFABEA0B6B39DDA9B8BB7B8B9AB #B

6465626663679E687471727378757677 #C

AC69EDEEEBEFECBF80FDFEFBFCBAAE59 #D

4445424643479C485451525358555657 #E

8C49CDCECBCFCCE170DDDEDBDC8D8EDF #F

EOF

Note

When ICU libraries are used for generating ASCII to EBCDICtranslation tables, ,swaplfnl
must be added to the EBCDIC codepage name so that ASCII line feed characters (0A) are
correctly translated to EBCDIC newline characters (15).

In order to create a custom translation table, first create a translation table with ssh-translation-table and
then edit it with any text editor.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

304 Appendix B Command-Line Tools and Man Pages

Environment Variables

SSH_CHARSET_CONV

The full pathname of the Tectia conversion DLL. Only required if ssh-translation-table or the
conversion DLL are not in the installation directories. Here is an example of the pathname:

SSH_CHARSET_CONV=/opt/tectia/lib/shlib/i18n_iconv.so

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

305

ssh-keygen-g3

ssh-keygen-g3 — authentication key pair generator

Synopsis

ssh-keygen-g3 [options ...]
[key1 key2 ...]

Description

ssh-keygen-g3 (ssh-keygen-g3.exe on Windows) is a tool that generates and manages authentication keys
for Secure Shell. Each user wishing to use a Secure Shell client with public-key authentication can run
this tool to create authentication keys. Additionally, the system administrator can use this to generate host
keys for the Secure Shell server. This tool can also convert openSSH public or private keys to the Tectia
key format, or, from Tectia key format to openSSH format. Tectia public keys use The Secure Shell (SSH)
Public Key File Format (RFC 4716).

By default, if no path for the key files is specified, the key pair is generated under the user's home directory
($HOME/.ssh2 on Unix, "%APPDATA%\SSH\UserKeys" on Windows). If no file name is specified, the key
pair is likewise stored under the user's home directory with such file names as id_type_bits_a and
id_type_bits_a.pub.

When specifying file paths or other strings that contain spaces, enclose them in quotation marks ("").

Options

The following options are available:

-1 file

Converts a key file from the SSH1 format to the SSH2 format. Note: "1" is number one (not letter L).

-7 file

Extracts certificates from a PKCS #7 file.

-b bits

Specifies the length of the generated key in bits. The allowed and default lengths for different key
types are:

• RSA or DSA: allowed 512 to 65536 bits, default 3072 bits

• ECDSA: allowed 256, 384 and 521 bits, default 384 bits

• Ed25519: allowed/default 256 bits

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

306 Appendix B Command-Line Tools and Man Pages

-B num

Specifies the number base for displaying key information (default: 10).

-c comment

Specifies a comment string for the generated key.

-D file

Derives the public key from the private key file.

-e file

Edits the specified key. Makes ssh-keygen-g3 interactive. You can change the key's passphrase or
comment.

-F, --fingerprint file

Dumps the fingerprint and type (RSA, DSA, ECDSA or Ed25519) of the given public key. By default,
the fingerprint is given in the SSH Babble format, which makes the fingerprint look like a string
of "real" words (making it easier to pronounce). The output format can be changed with the --
fingerprint-type option.

The following options can be also used to modify the behavior of this option: --fingerprint-type
--hash, --hostkeys-directory, --known-hosts, --rfc4716.

-F, --fingerprint host_ID

Dumps the location, fingerprint and type (RSA, DSA, ECDSA or Ed25519) of the locally stored host
key(s) identified with the given host_ID. The host_ID is a host name or string "host#port".

The following options can be used to modify the behavior of this option: --fingerprint-type, --
hash, --hostkeys-directory, --known-hosts, --rfc4716.

-H, --hostkey

Stores the generated key pair in the default host key directory (/etc/ssh2 on Unix, "<INSTALLDIR>
\SSH Tectia Server" on Windows). By default stores the private key with an empty passphrase
or if in FIPS mode with random passphrase in <privatekey>.pass. Use --prompt-pass option to
prompt for the passphrase in --hostkey mode.

-i file

Loads and displays information on the key file.

--pass-file file

Read passphrase from a file for displaying -i information on a passphrase protected private key. If
<privatekey>.pass exists, it is used by default.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

307

-p passphrase

Specifies the passphrase for the generated key.

-P

Specifies that the generated key will be saved with an empty passphrase.

Note

In FIPS mode, due to a FIPS regulation which forbids exporting unencrypted private keys
out of the FIPS module, it is not possible to generate user keys without a passphrase.

--random-pass

Create random passphrase for the generated private key and save it to <privatekey>.pass. By default
the passprase is Base64 encoded.

-k file

Converts a PKCS #12 file to an SSH2-format certificate and private key.

-m, --generate-moduli-file

Generates moduli file secsh_dh_gex_moduli for Diffie-Hellman group exchange.

-q, --quiet

Hides the progress indicator during key generation.

-r file

Adds entropy from file to the random pool. If file contains 'relatively random' data (i.e. data
unpredictable by a potential attacker), the randomness of the pool is increased. Good randomness is
essential for the security of the generated keys.

-t dsa | rsa | ecdsa | ed25519

Selects the type of the key. Valid values are rsa (default), dsa, ecdsa, and ed25519.

-x file

Converts a private key from the X.509 format to the SSH2 format.

--append [=yes | no]

Appends the keys. Optional values are yes and no. The default is yes to append.

--copy-host-id host_ID destination

Copies the host identity to the specified destination directory.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

308 Appendix B Command-Line Tools and Man Pages

The following options can be used to modify the behavior of this option: --append, --hostkeys-
directory, --known-hosts, --overwrite.

If --hostkey-file is given, the file is treated as a normal host identity file used by the Connection
Broker, and its contents will be copied to the destination directory.

--delete-host-id host_ID

Deletes the host key of the specified host ID. The host_ID is a host name or string "host#port".

The following options can be used to modify the behavior of this option: --host-key-file, --
hostkeys-directory, --known-hosts.

--hash sha256 | sha1 | md5

Specifies the digest algorithm for fingerprint generation. Valid options are sha256, sha1 and md5.
The default is sha1.

--fingerprint-type base64 | babble | babble-upper | pgp-2 | pgp-5 | hex | hex-upper

Specifies the output format of the fingerprint. If this option is given, the -F option and the key file
name must precede it. The default format is babble.

See the section called “Examples” for examples of using this option.

--fips-mode

Generates the key using the FIPS mode for the cryptographic library.

The keys must have non-empty passphrases.

By default (if this option is not given or Tectia FIPSMODE switch file is not present), the key is
generated using the standard mode for the cryptographic library.

--fips-crypto-dll-path PATH

Specifies the location of the FIPS cryptographic DLL.

--hostkey-file file

When copying, uses the given file as the source host key, instead of autodetecting the location. When
deleting, only deletes from the given location. If the specified file does not contain identities for the
specified host, does nothing.

--hostkeys-directory directory

Specifies the directory for known host keys to be used instead of the default location.

--import-public-key infile [outfile]

Attempts to import a public key from infile and store it to outfile in the format specified by --key-
format parameter. If outfile is not given, it will be requested. The default output format is SSH2
native format.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

309

--import-private-key infile [outfile]

Attempts to import a private key from infile and store it to outfile in the format specified by
--key-format parameter. If outfile is not given, it will be requested. The default output format is
SSH2 native private key format.

--import-ssh1-authorized-keys infile outfile

Imports an SSH1-style authorized_keys file infile and generates an SSH2-style authorization file
outfile, and stores the keys from infile to generated files into the same directory with outfile.

--key-format format

Output key format: secsh2, pkcs1, pkcs8, pkcs12, openssh2, or openssh2-aes.

--key-hash hash

This option can be used for other than Tectia key formats. Specifies the hash algorithm to be used in
passphrase-based private key derivation. The default value is sha1. Other supported algorithms are
sha224, sha256, sha384, and sha512. Note that all key formats do not support all hash algorithms.

--known-hosts file

Uses the specified known hosts file. Enables fetching fingerprints for hosts defined in an OpenSSH-
style known-hosts file. Using this option overrides the default locations of known_hosts files (/
etc/ssh/ssh_known_hosts and $HOME/.ssh/known_hosts). Giving an empty string will disable
known-hosts usage altogether.

--moduli-file-name file

Writes the moduli generated for Diffie-Hellman group exchange to file. (The default file name for
option -m is secsh_dh_gex_moduli.)

--overwrite [=yes | no]

Overwrite files with the same file names. The default is to overwrite.

--rfc4716

Displays the fingerprint in the format specified in RFC4716. The digest algorithm (hash) is md5, and
the output format is the 16-bytes output in lowercase HEX separated with colons (:).

--set-hostkey-owner-and-dacl file

On Windows, sets the correct owner and DACL (discretionary access control list) for the host key
file. This option is used internally when a host key is generated during Tectia Server installation.

--sign-cert file

Make a certificate with the generated public key, and write to file. For a complete list of additional
certificate options, view the option help with --sign-cert help.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

310 Appendix B Command-Line Tools and Man Pages

-V

Displays version string and exits.

-h, --help, -?

Displays a short summary of command-line options and exits.

Examples

Create a 3072-bit RSA key pair using the cryptographic library in the FIPS mode and store the key pair
in the default user key directory with file names newkey and newkey.pub:

$ ssh-keygen-g3 --fips-mode -b 3072 newkey

Display the fingerprint of a server host public key in SSH babble (default) format:

$ ssh-keygen-g3 -F hostkey.pub

Fingerprint for key:

xeneh-fyvam-sotaf-gutuv-rahih-kipod-poten-byfam-hufeh-tydym-syxex

Display the Base64-encoded SHA256 fingerprint of the public hostkey:

$ ssh-keygen-g3 --hash sha256 --fingerprint-type base64 -F hostkey.pub

Fingerprint for key `hostkey.pub':

9UmbXHpUodKPXS0pFIACGLjKoiHQBShPVZj6ShUNWgM (RSA)

Convert a private key into openSSH2-AES format:

$ ssh-keygen-g3 -p <password> --key-format openssh2-aes \

 --import-private-key <source_key_file> <destination_key_file>

Note: if the private key file that is being converted is encrypted with a passphrase, the passphrase must
be provided with the '-p' option.

Convert a Tectia public key tectiakey.pub to an OpenSSH public key opensshkey.pub:

$ ssh-keygen-g3 --key-format openssh2 --import-public-key \

 tectiakey.pub opensshkey.pub

Generate moduli file dhgex-moduli for Diffie-Hellman group exchange:

$ ssh-keygen-g3 -m --moduli-file-name dhgex-moduli

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

311

ssh-keyfetch

ssh-keyfetch — Host key tool for the Secure Shell client

Synopsis

ssh-keyfetch [options ...]
[host]

Description

ssh-keyfetch (ssh-keyfetch.exe on Windows) is a tool that downloads server host keys and optionally sets
them as known host keys for the Secure Shell client. It is typically used by the system administrator during
the initial setup phase.

By default the host key is fetched from the server and saved in file key_host_port.suffix in the current
directory.

Options

The following options are available:

-a, --set-trusted

Instead of writing the public key to a file, add the public key as a known host key to the user-specific
directory: $HOME/.ssh2/hostkeys (%APPDATA%\SSH\HostKeys on Windows). This option cannot
be combined with -C or -K.

Caution

When ssh-keyfetch is run with the -a option, it accepts the received host keys automatically
without prompting the user. You should verify the validity of keys by verifying the key
fingerprints after receiving them or you risk being subject to a man-in-the-middle attack.

To validate the host key, obtain the host key fingerprint from a trusted source (for example
by calling the server administrator) and verify it against the output from command:

ssh-keygen-g3 --fingerprint <hostname>

-A, --fetch-any

Probe for and fetch either server public key or certificate.

-C, --fetch-certificate

Probe for and fetch the server certificate only.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

312 Appendix B Command-Line Tools and Man Pages

-d, --debug debug-level

Enable debugging.

-D, --debug-default

Enable debugging with default level.

-f, --filename-format nameformat

Filename format for known host keys. Accepted values are plain and hashed. The default is plain.

-F, --fingerprint-type [=babble | babble-upper | pgp-2 | pgp-5 | hex | hex-upper]

Public key fingerprint type for fingerprints displayed in messages and log. Most popular types are
babble (the SSH babble format) and hex. The default is babble. See also the option --rfc4716.

-H, --hash [=md5 | sha1]

Specifies the digest algorithm for fingerprint generation. Valid options are md5 and sha1.

-K, --kex-key-formats typelist

Explicitly specify the host-key types accepted in protocol key exchange. For experts only. See RFC
4253 for details.

-l, --log

Report successfully received keys in log format. The log format consists of one line per key, six fields
per line. The fields are:

• accept|save

• replace|append

• hostname

• ip-port

• user-id

• key-file-path

• fingerprint

-o, --output-file output-file

Write result to output-file. A minus sign ("-") denotes standard output.

-O, --output-directory output-dir

Write result to output-dir. The default is the current directory.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

313

-p, --port port

Server port (default: 22).

-P, --fetch-public-key

Probe for and fetch the server public key only. This is the default behaviour.

-q, --quiet

Quiet mode, report only errors.

-R, --rfc4716

Displays the public key fingerprints in the format specified in RFC 4716. The digest algorithm (hash)
is md5, and the output format is the 16-bytes output in lowercase HEX separated with colons (:).

-S, --proxy-url socks-url

Specifies the SOCKS server to use.

-t, --timeout timeout

Connection timeout in seconds (default: 10 seconds).

--append [=yes | no]

Instead of appending a new host key, overwrite the existing known host keys for this host. Optional
values are yes and no. The default is to append.

-V, --version

Displays version string and exits.

Environment Variables

SSH_SOCKS_SERVER

The address of the SOCKS server used by ssh-keyfetch.

Examples

Connect to the server through a SOCKS proxy:

$ ssh-keyfetch -S socks://fw.example.com:1080/10.0.0.0/8 server.outside.example

Public key from server.outside.example:22 saved.

 File: server.outside.example.pub

 Fingerprint: xucar-bened-liryt-lumup-minad-tozuc-pesyp-vafah-mugyd-susic-guxix

Accept the server key as a known key for Tectia Client and report in the more rigid log format:

$ ssh-keyfetch -a -l newhost

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

314 Appendix B Command-Line Tools and Man Pages

Accepted newhost 22 testuser /home/testuser/.ssh2/hostkeys/key_22_newhost.pub

xigad-hozuf-kykek-vogid-dumid-bydop-mulym-zegar-nybuv-muled-syxyx

Accept the server key as a known key for Tectia Client and store the key to global configuration hostkeys
directory:

$ ssh-keyfetch -a --output-directory /etc/ssh2/hostkeys

Accepted newhost 22 testuser /etc/ssh2/hostkeys/key_22_anotherhost.pub

bydop-mulym-zegar-nybuv-muled-syxyx-xigad-hozuf-kykek-vogid-dumid

Accept the server key as a known key for Tectia Client and use an uninformative hash as the filename
for the stored known key:

$ ssh-keyfetch -f hashed -a newhost

Public key from newhost:22 accepted as trusted hostkey.

 File:

 /home/testuser/.ssh2/hostkeys/keys_420b23ca959ab165e52e117a90baa89d92ffc535

 Fingerprint:

 xigad-hozuf-kykek-vogid-dumid-bydop-mulym-zegar-nybuv-muled-syxyx

Fetch the X.509 certificate of the server running in port 222 and display the content with ssh-certview:

$ ssh-keyfetch -C -p 222 -o - newhost | ssh-certview -

Certificate =

 SubjectName = <C=FI, O=SSH, OU=DEV, CN=newhost.ssh.com>

 IssuerName = <C=FI, O=SSH, CN=Sickle CA>

 SerialNumber= 24593438

 Validity =

 NotBefore = 2007 Sep 13th, 15:10:00 GMT

 NotAfter = 2008 Sep 12th, 15:10:00 GMT

 PublicKeyInfo =

 PublicKey =

 Algorithm = RSA

 Modulus n (1024 bits) :

...

 Fingerprints =

 MD5 = 3c:71:17:9b:c2:12:26:cf:96:27:fb:d7:a8:19:37:89

 SHA-1 =

 14:72:f3:0f:20:5e:75:ed:d2:c3:86:4b:69:45:00:47:ae:fe:31:64

This explicit key exchange type list is equivalent to specifying option -A:

$ ssh-keyfetch -K ssh-rsa,ssh-dss,x509v3-sign-rsa,x509v3-sign-dss newhost

Public key from newhost:22 saved.

 File: key_newhost_22.pub

 Fingerprint:

 xigad-hozuf-kykek-vogid-dumid-bydop-mulym-zegar-nybuv-muled-syxyx

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

315

ssh-cmpclient-g3

ssh-cmpclient-g3 — CMP enrollment client

Synopsis

ssh-cmpclient-g3 command [options] access [name]

Where command is one of the following:

 INITIALIZE psk|racerts keypair template

 ENROLL certs|racerts keypair template

 UPDATE certs [keypair]

 POLL psk|certs|racerts id

 RECOVER psk|certs|racerts template

 REVOKE psk|certs|racerts template

 TUNNEL racerts template

Most commands can accept the following options:

 -B Perform key backup for subject keys.

 -o prefix Save result into files with given prefix.

 -O filename Save the result into the specified file.

 If there is more than one result file,

 the remaining results are rejected.

 -C file CA certificate from this file.

 -S url Use this SOCKS server to access the CA.

 -H url Use this HTTP proxy to access the CA.

 -E PoP by encryption (CA certificate needed).

 -v num Protocol version 1|2 of the CA platform. Default is 2.

 -y Non-interactive mode. All questions answered with 'y'.

 -N file Specifies a file to stir to the random pool.

 -d level Set debug level.

 -Z provspec Specifies external key provider for the private key.

 The format of provspec is "providername:initstring".

The following identifiers are used to specify options:

 psk -p refnum:key (reference number and pre-shared key)

 -p file (containing refnum:key)

 -i number (iteration count, default 1024)

 certs -c file (certificate file) -k url (private-key URL)

 racerts -R file (RA certificate file) -k url (RA private-key URL)

 keypair -P url (private-key URL)

 id -I number (polling ID)

 template -T file (certificate template)

 -s subject-ldap[;type=value]

 -u key-usage-name[;key-usage-name]

 -U extended-key-usage-name[;extended-key-usage-name]

 access URL where the CA listens for requests.

 name LDAP name for the issuing CA (if -C is not given).

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

316 Appendix B Command-Line Tools and Man Pages

Key URLs are either valid external key paths or in the format:

 "generate://savetype:passphrase@keytype:size/save-file-prefix"

 "file://passphrase/relative-key-file-path"

 "file:relative-key-file-path"

 "any-key-file-path"

The key generation "savetype" can be:

 - ssh2, secsh2, secsh (Secure Shell 2 key type)

 - ssh1, secsh1 (legacy Secure Shell 1 key type)

 - pkcs1 (PKCS #1 format)

 - pkcs8s (passphrase-protected PKCS #8, "shrouded PKCS #8")

 - pkcs8 (plain-text PKCS #8)

 - x509 (Tectia-proprietary X.509 library key type)

 -h Prints usage message.

 -F Prints key usage extension and keytype instructions.

 -e Prints command-line examples.

Description

The ssh-cmpclient-g3 command-line tool (ssh-cmpclient-g3.exe on Windows) is a certificate enrollment
client that uses the CMP protocol. It can generate an RSA or DSA public-key pair and get certificates for
their public components. CMP is specified by the IETF PKIX Working Group for certificate life-cycle
management, and is supported by some CA platforms, such as RSA Keon.

Commands

The ssh-cmpclient-g3 command-line command keywords are listed below. Shorthands longer than three
letters can be used to identify the command. The commands are case-insensitive. The user must specify
the CA address URL for each command. Here the term "user" refers to a user, program, or hardware device.

INITIALIZE

Requests the user's initial certificate. The request is authenticated using the reference number and the
corresponding key (PSK) received from the CA or RA using some out-of-band mechanism.

The user must specify the PSK, the asymmetric key pair, and a subject name.

ENROLL

Requests a new certificate when the user already has a valid certificate for the key. This request is
similar to initialize except that it is authenticated using public-key methods.

POLL

Polls for a certificate when a request was not immediately accepted.

UPDATE

Requests an update of an existing certificate (replacement). The issued certificate will be similar to
the existing certificate (names, flags, and other extensions). The user can change the key, and the

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

317

validity times are updated by the CA. This request is authenticated by a valid existing key pair and
a certificate.

RECOVER

Requests recovery of a backed-up key. This request is authenticated either by PSK-based or certificate-
based authentication. The template describes the certificate whose private key has already been
backed up and should be recovered. Users can only recover keys they have backed up themselves.

REVOKE

Requests revocation for a key specified in the template. Authentication of the request is made using
a PSK or a certificate belonging to the same user as the subject of revocation.

TUNNEL

Operates in RA tunnel mode. Reads requests and optionally modifies the subject name, alternative
names, and extensions based on the command line. Approves the request and sends it to the CA.

Options

The ssh-cmpclient-g3 command-line options are listed below. Note that when a file name is specified,
an existing file with the same name will be overwritten. When specifying subject names or other strings
that contain spaces, enclose them in quotation marks ("").

-B

Requests private key backup to be performed for the initialize, enroll, and update commands.

-o prefix

Saves resulting certificates and CRLs into files with the given prefix. The prefix is first appended
by a number, followed by the file extension .crt or .crl, depending on the type of object.

-O filename

Saves the result into the specified absolute filename. If there is more than one result file, the remaining
results are rejected.

-C file

Specifies the file path that contains the CA certificate. If key backup is done, the file name must be
given, but in most cases the LDAP name of the CA can be given instead.

-S url

Specifies the SOCKS URL if the CA is located behind a SOCKS- enabled firewall. The format of
the URL is: socks://[username@]server[:port][/network/bits[,network/bits]]

-H url

Uses the given HTTP proxy server to access the CA. The format of the URL is: http://
server[:port]/

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

318 Appendix B Command-Line Tools and Man Pages

-E

Performs encryption proof of possession if the CA supports it. In this method of PoP, the request is not
signed, but instead the PoP is established based on the ability to decrypt the certificates received from
the CA. The CA encrypts the certificates with the user's public key before sending them to the user.

-v num

Selects the CMP protocol version. This is either value 1, for an RFC 2510-based protocol, or 2 (the
default) for CMPv2.

-N file

Specifies a file to be used as an entropy source during key generation.

-d level

Sets the debug level string to level.

-Z provspec

Specifies the external key provider for the private key. Give provspec in the format
"providername:initstring".

The usage line uses the following meta commands:

psk

The reference number and the corresponding key value given by the CA or RA.

-p refnum:key|file

refnum and key are character strings shared among the CA and the user. refnum identifies the
secret key used to authenticate the message. The refnum string must not contain colon characters.

Alternatively, a filename containing the reference number and the key can be given as the
argument.

-i number

number indicates the key hashing iteration count.

certs

The user's existing key and certificate for authentication.

-k url

URL specifying the private key location. This is an external key URL whose format is specified
in the section called “Synopsis”.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

319

-c file

Path to the file that contains the certificate issued to the public key given in the -k option
argument.

racerts

In RA mode, the RA key and certificate for authentication.

-k url

URL specifying the private key location. This is an external key URL whose format is specified
in the section called “Synopsis”.

-R file

Path to the file that contains the RA certificate issued to the public key given in the -k option
argument.

keypair

The subject key pair to be certified.

-P url

URL specifying the private key location. This is an external key URL whose format is specified
in the section called “Synopsis”.

id

Polling ID used if the PKI action is left pending.

-I number

Polling transaction ID number given by the RA or CA if the action is left pending.

template

The subject name and flags to be certified.

-T file

The file containing the certificate used as the template for the operation. Values used to identify
the subject are read from this, but the user can overwrite the key, key-usage flags, or subject
names.

-s subject-ldap[;type=value]*

A subject name in reverse LDAP format, that is, the most general component first, and alternative
subject names. The name subject-ldap will be copied into the request verbatim.

A typical choice would be a DN in the format "C=US,O=SSH,CN=Some Body", but in principle
this can be anything that is usable for the resulting certificate.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

320 Appendix B Command-Line Tools and Man Pages

The possible type values are ip, email, dn, dns, uri, and rid.

-u key-usage-name[;key-usage-name]*

Requested key usage purpose code. The following codes are recognized: digitalSignature,
nonRepudiation, keyEncipherment, dataEncipherment, keyAgreement, keyCertSign,
cRLSign, encipherOnly, decipherOnly, and help. The special keyword help lists the
supported key usages which are defined in RFC 3280.

-U extended-key-usage-name[;extended-key-usage-name]*

Requested extended key usage code. The following codes, in addition to user-specified dotted
OID values are recognized: serverAuth, clientAuth, codeSigning, emailProtection,
timeStamping, ikeIntermediate, and smartCardLogon.

access

Specifies the CA address in URL format. Possible access methods are HTTP (http://host:port/
path), or plain TCP (tcp://host:port/path). If the host address is an IPv6 address, it must be
enclosed in square brackets (http://[IPv6-address]:port/).

name

Optionally specifies the destination CA name for the operation, in case a CA certificate was not given
using the option -C.

Examples

Initial Certificate Enrollment

This example provides commands for enrolling an initial certificate for digital signature use. It generates a
private key into a PKCS #8 plaintext file named initial.prv, and stores the enrolled certificate into file
initial-0.crt. The user is authenticated to the CA with the key identifier (refnum) 62154 and the key
ssh. The subject name and alternative IP address are given, as well as key-usage flags. The CA address
is pki.ssh.com, the port 8080, and the CA name to access Test CA 1.

$ ssh-cmpclient-g3 INITIALIZE \

 -P generate://pkcs8@rsa:2048/initial -o initial \

 -p 62154:ssh \

 -s 'C=FI,O=SSH,CN=Example/initial;IP=1.2.3.4' \

 -u digitalsignature \

 http://pki.ssh.com:8080/pkix/ \

 'C=FI, O=SSH Communications Security Corp, CN=SSH Test CA 1 No Liabilities'

As a response the command presents the issued certificate to the user, and the user accepts it by typing
yes at the prompt.

Certificate =

 SubjectName = <C=FI, O=SSH, CN=Example/initial>

 IssuerName = <C=FI, O=SSH Communications Security Corp,

 CN=SSH Test CA 1 No Liabilities>

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

321

 SerialNumber= 8017690

 SignatureAlgorithm = rsa-pkcs1-sha1

 Validity = ...

 PublicKeyInfo = ...

 Extensions =

 Viewing specific name types = IP = 1.2.3.4

 KeyUsage = DigitalSignature

 CRLDistributionPoints = ...

 AuthorityKeyID =

 KeyID = 3d:cb:be:20:64:49:16:1d:88:b7:98:67:93:f0:5d:42:81:2e:bd:0c

 SubjectKeyID =

 KeyId = 6c:f4:0e:ba:b9:ef:44:37:db:ad:1f:fc:46:e0:25:9f:c8:ce:cb:da

 Fingerprints =

 MD5 = b7:6d:5b:4d:e0:94:d1:1f:ec:ca:c2:ed:68:ac:bf:56

 SHA-1 = 4f:de:73:db:ff:e8:7d:42:c4:7d:e1:79:1f:20:43:71:2f:81:ff:fa

Do you accept the certificate above? yes

Key update

Before the certificate expires, a new certificate with updated validity period should be enrolled. ssh-
cmpclient-g3 supports key update, where a new private key is generated and the key update request
is authenticated with the old (still valid) certificate. The old certificate is also used as a template for
issuing the new certificate, so the identity of the user will not be changed during the key update. With the
following command you can update the key pair, which was enrolled in the previous example. Presenting
the resulting certificate has been left out.

$ ssh-cmpclient-g3 UPDATE \

 -k initial.prv -c initial-0.crt -P \

 generate://pkcs8@rsa:2048/updatedcert -o updatedcert \

 http://pki.ssh.com:8080/pkix/ \

 "C=FI, O=SSH Communications Security Corp, CN=SSH Test CA 1 No Liabilities"

The new key pair can be found in the files with the updatedcert prefix. The policy of the issuing CA
needs to also allow automatic key updates if ssh-cmpclient-g3 is used in the UPDATE mode.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

322 Appendix B Command-Line Tools and Man Pages

ssh-scepclient-g3

ssh-scepclient-g3 — SCEP enrollment client

Synopsis

ssh-scepclient-g3 command [options] access [name]

Where command is one of the following:

 GET-CA

 GET-CHAIN

 ENROLL psk keypair template

Most commands can accept the following options:

 -o prefix Save result into files with prefix.

 -S url Use this socks server to access CA.

 -H url Use this HTTP proxy to access CA.

The following identifiers are used to specify options:

 psk -p key (used as revocationPassword or challengePassword)

 keypair -P url (private-key URL)

 ca -C file (CA certificate file)

 -E file (RA encryption certificate file)

 -V file (RA validation certificate file)

 template -T file (certificate template)

 -s subject-ldap[;type=value]

 -u key-usage-name[;key-usage-name]

 -U extended-key-usage-name[;extended-key-usage-name]

 access URL where the CA listens for requests.

GET-CA and GET-CHAIN take name argument, that is something

interpreted by the CA to specify a CA entity managed by the responder.

Key URLs are either valid external key paths or in the format:

 "generate://savetype:password@keytype:size/save-file-prefix"

 "file://savetype:password@/file-prefix"

 "file://passphrase/file-prefix"

 "file:/file-prefix"

 "key-filename"

The "keytype" for the SCEP protocol has to be "rsa".

The key generation "savetype" can be:

 - ssh2 (Secure Shell 2 key type)

 - ssh1 (Legacy Secure Shell 1 key type)

 - ssh (Tectia proprietary crypto library format, passphrase-protected)

 - pkcs1 (PKCS#1 format)

 - pkcs8s (passphrase-protected PKCS#8, "shrouded PKCS#8")

 - pkcs8 (plain-text PKCS#8)

 - x509 (Tectia proprietary X.509 library key type)

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

323

Description

The ssh-scepclient-g3 command-line tool (ssh-scepclient-g3.exe on Windows) is a certificate enrollment
client that uses the SCEP protocol. It can generate an RSA public-key pair and get certificates for its
public components. The SCEP protocol was developed by Cisco and Verisign to be used on Cisco routers.
Nowadays most CA platforms support this protocol for client certificate enrollment.

Commands

The ssh-scepclient-g3 command-line command keywords are listed below. Shorthands longer than three
letters can be used to identify the command. The commands are case-insensitive. The user must specify
the CA address URL for each command. Here the term "user" refers to a user, program, or hardware device.

GET-CA

Requests CA or RA certificate download from the CA, and display the certificate fingerprint for CA
validation. Fingerprints should be received from the CA using some out-of-band mechanism.

GET-CHAIN

Requests certificate chain from the CA/RA to the top-level CA.

ENROLL

Requests a new certificate from the CA. The CA will authorize the request using some out-of-band
mechanism, or it can contain a password received from the CA.

Options

-o prefix

Saves output certificates into files with the given prefix. The prefix is first appended by a number,
followed by the file extension .ca for CA certificates or .crt for user certificates.

-S url

Specifies the SOCKS URL if the CA is located behind a SOCKS-enabled firewall. The format of the
URL is: socks://[username@]server[:port][/network/bits[,network/bits]]

-H url

Uses the given HTTP proxy server to access the CA. The format of the URL is: http://
server[:port]/.

The usage line uses the following meta commands:

psk

The pre-shared key given by the CA or RA, or a revocation password invented by the client and
provided to the CA when the user wishes to revoke the certificate issued. The type and need for this
depends on the PKI platform used by the CA.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

324 Appendix B Command-Line Tools and Man Pages

-p key

An authentication password or a revocation password transferred (in encrypted format) to the
CA for certification request or revocation request authorization purposes.

keypair

The subject key pair to be certified.

-P url

URL specifying the private key location. This is an external key URL whose format is specified
in the section called “Synopsis”.

ca

The CA/RA certificates.

-C file

When performing enrollment, reads the CA certificate from the given file path.

-E file

Optionally specifies the RA encryption certificate.

-V file

Optionally specifies the RA signing certificate.

template

The subject name and flags to be certified.

-T file

The file containing the certificate used as the template for the operation. Values used to identify
the subject are read from this, but the user may overwrite the key, key-usage flags, or subject
names.

-s subject-ldap[;type=value]*

A subject name in reverse LDAP format, that is, the most general component first, and alternative
subject names. The name subject-ldap will be copied into the request verbatim.

A typical choice would be a DN in the format "C=US,O=SSH,CN=Some Body", but in principle
this can be anything that is usable for the resulting certificate.

The possible type values are ip, email, dn, dns, uri, and rid.

-u key-usage-name[;key-usage-name]*

Requested key usage purpose code. The following codes are recognized: digitalSignature,
nonRepudiation, keyEncipherment, dataEncipherment, keyAgreement, keyCertSign,

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

325

cRLSign, encipherOnly, decipherOnly, and help. The special keyword help lists the
supported key usages which are defined in RFC 3280.

-U extended-key-usage-name[;extended-key-usage-name]*

Requested extended key usage code. The following codes, in addition to user-specified dotted
OID values are recognized: serverAuth, clientAuth, codeSigning, emailProtection,
timeStamping, ikeIntermediate, and smartCardLogon.

access

Specifies the address of the CA in URL format. If the host address is an IPv6 address, it must be
enclosed in brackets (http://[IPv6-address]:port/).

name

Specifies the destination CA name.

Examples

In the following example we first receive the CA certificate. The CA address is pki.ssh.com, the port
is 8080, and the CA name is test-ca1.ssh.com.

$ ssh-scepclient-g3 GET-CA \

 -o ca http://pki.ssh.com:8080/scep/ \

 test-ca1.ssh.com

Received CA/RA certificate ca-0.ca:

fingerprint 9b:96:51:bb:29:0d:c9:e0:75:c8:03:0d:0d:92:60:6c

Next, we enroll an RSA certificate. The user is authenticated to the CA with the key ssh. The subject
name and alternative IP address are given, as well as key-usage flags.

$ ssh-scepclient-g3 ENROLL \

 -C ca-0.ca -p ssh \

 -o subject -P generate://pkcs8:ssh@rsa:2048/subject \

 -s 'C=FI,O=SSH,CN=SCEP Example;IP=1.2.3.4' \

 -u digitalsignature \

 http://pki.ssh.com:8080/scep/

Received user certificate subject-0.crt:

fingerprint 4b:7e:d7:67:27:5e:e0:54:2f:5b:56:69:b5:01:d2:15

$ ls subject*

subject-0.crt subject.prv

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

326 Appendix B Command-Line Tools and Man Pages

ssh-certview-g3

ssh-certview-g3 — certificate viewer

Synopsis

ssh-certview-g3

[options...] file
[options...] file ...

Description

The ssh-certview-g3 program (ssh-certview-g3.exe on Windows) is a simple command-line application,
capable of decoding and showing X.509 certificates, CRLs, and certification requests. The command
output is written to the standard output.

Options

The following options are available:

-h

Displays a short help.

-verbose

Gives more diagnostic output.

-quiet

Gives no diagnostic output.

-auto

The next input file type is auto-detected (default).

-cert

The next input file is a certificate.

-certpair

The next input file is a cross-certificate pair.

-crmf

The next input file is a CRMF certification request.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

327

-req

The next input file is a PKCS #10 certification request.

-crl

The next input file is a CRL.

-prv

The next input file is a private key.

-pkcs12

The next input file is a PKCS#12 package.

-ssh2

The next input file is an SSH2 public key.

-spkac

The next input file is a Netscape-generated SPKAC request.

-noverify

Does not check the validity of the signature on the input certificate.

-autoenc

Determines PEM/DER automatically (default).

-pem

Assumes that the input file is in PEM (ASCII base-64) format. This option allows both actual PEM
(with headers and footers), and plain base-64 (without headers and footers). An example of PEM
header and footer is shown below:

-----BEGIN CERTIFICATE-----

encoded data

-----END CERTIFICATE-----

-der

Assumes that the input file is in DER format.

-hexl

Assumes that the input file is in Hexl format. (Hexl is a common Unix tool for outputting binary files
in a certain hexadecimal representation.)

-skip number

Skips number bytes from the beginning of input before trying to decode. This is useful if the file
contains some garbage before the actual contents.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

328 Appendix B Command-Line Tools and Man Pages

-ldap

Prints names in LDAP order.

-utf8

Prints names in UTF-8.

-latin1

Prints names in ISO-8859-1.

-base10

Outputs big numbers in base-10 (default).

-base16

Outputs big numbers in base-16.

-base64

Outputs big numbers in base-64.

-width number

Sets output width (number characters).

Example

For example, using a certificate downloaded from pki.ssh.com, when the following command is given:

$ ssh-certview-g3 -width 70 ca-certificate.cer

The following output is produced:

Certificate =

 SubjectName = <C=FI, O=SSH Communications Security Corp, CN=Secure

 Shell Test CA>

 IssuerName = <C=FI, O=SSH Communications Security Corp, CN=Secure

 Shell Test CA>

 SerialNumber= 34679408

 SignatureAlgorithm = rsa-pkcs1-sha1

 Certificate seems to be self-signed.

 * Signature verification success.

 Validity =

 NotBefore = 2003 Dec 3rd, 08:04:27 GMT

 NotAfter = 2005 Dec 2nd, 08:04:27 GMT

 PublicKeyInfo =

 PublicKey =

 Algorithm name (SSH) : if-modn{sign{rsa-pkcs1-md5}}

 Modulus n (1024 bits) :

 9635680922805930263476549641957998756341022541202937865240553

 9374740946079473767424224071470837728840839320521621518323377

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

329

 3593102350415987252300817926769968881159896955490274368606664

 0759644131690750532665266218696466060377799358036735475902257

 6086098562919363963470926690162744258451983124575595926849551

 903

 Exponent e (17 bits) :

 65537

 Extensions =

 Available = authority key identifier, subject key identifier, key

 usage(critical), basic constraints(critical), authority

 information access

 KeyUsage = DigitalSignature KeyEncipherment KeyCertSign CRLSign

 [CRITICAL]

 BasicConstraints =

 PathLength = 0

 cA = TRUE

 [CRITICAL]

 AuthorityKeyID =

 KeyID =

 eb:f0:4d:b5:b2:4c:be:47:35:53:a8:37:d2:8d:c8:b2:f1:19:71:79

 SubjectKeyID =

 KeyId =

 eb:f0:4d:b5:b2:4c:be:47:35:53:a8:37:d2:8d:c8:b2:f1:19:71:79

 AuthorityInfoAccess =

 AccessMethod = 1.3.6.1.5.5.7.48.1

 AccessLocation =

 Following names detected =

 URI (uniform resource indicator)

 Viewing specific name types =

 URI = http://pki.ssh.com:8090/ocsp-1/

 Fingerprints =

 MD5 = c7:af:e5:3d:f6:ea:ce:da:07:93:d0:06:8d:c0:0a:f8

 SHA-1 =

 27:d7:19:47:7c:08:3e:1a:27:4b:68:8e:18:83:e8:f9:23:e8:29:85

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

330 Appendix B Command-Line Tools and Man Pages

ssh-ekview-g3

ssh-ekview-g3 — external key viewer

Synopsis

ssh-ekview-g3 [options...] provider

Description

The ssh-ekview-g3 program (ssh-ekview-g3.exe on Windows) allows you to export certificates from
external key providers. You can further study these certificates with ssh-certview-g3.

This is useful when you want to generate, for example, entries for allowing certificate authentication in
the ssh-server-config.xml file. You might need to know the subject names on the certificate.

With ssh-ekview-g3, you can export the certificate and get the information you need from the certificates
with ssh-certview-g3.

Options

The following options are available:

-h

Displays a short help.

-i info

Uses info as the initialization string for the provider.

-k

Prints the key paths only.

-e keypath

Exports certificates at keypath to files.

-a

Exports all found certificates to files.

-b base

Uses base when printing integers. For example, the decimal 10 is 'a' in base-16.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

331

Appendix C Egrep Syntax
The Tectia tunneling filter rules can be matched to hostname or IP address patterns specified using the
egrep syntax. In addition, regular expressions can be used in selectors when specifying ranges of values.
The egrep syntax is explained in this section.

C.1 Egrep Patterns

The escape character is a backslash (\). You can use it to escape meta characters to use them in their
plain character form.

In the following examples literal 'E' and 'F' denote any expression, whether a pattern or a character.

(

Start a capturing subexpression.

)

End a capturing subexpression.

E|F

Disjunction, match either E or F (inclusive). E is preferred if both match.

E*

Act as Kleene star, match E zero or more times.

E+

Closure, match E one or more times.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

332 Appendix C Egrep Syntax

E?

Option, match E optionally once.

.

Match any character except for newline characters (\n, \f, \r) and the NULL byte.

E{n}

Match E exactly n times.

E{n,} or E{n,0}

Match E n or more times.

E{,n} or E{0,n}

Match E at most n times.

E{n,m}

Match E no less than n times and no more than m times.

[

Start a character set, see Section C.3.

$

Match the empty string at the end of the input or at the end of a line.

^

Match the empty string at the start of the input or at the beginning of a line.

C.2 Escaped Tokens for Regex Syntax Egrep

\0n..n

The literal byte with octal value n..n.

\0

The NULL byte.

\[1-9]..x

The literal byte with decimal value [1-9]..x.

\xn..n or \0xn..n

The literal byte with hexadecimal value n..n.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Character Sets For Egrep 333

\<

Match the empty string at the beginning of a word.

\>

Match the empty string at the end of a word.

\b

Match the empty string at a word boundary.

\B

Match the empty string provided it is not at a word boundary.

\w

Match a word-constituent character, equivalent to [a:zA:Z0:9-].

\W

Match a non-word-constituent character.

\a

Literal alarm character.

\e

Literal escape character.

\f

Literal line feed.

\n

Literal new line, equivalent to C's \n so it can be more than one character long.

\r

Literal carriage return.

\t

Literal tab.

All other escaped characters denote the literal character itself.

C.3 Character Sets For Egrep

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

334 Appendix C Egrep Syntax

A character set starts with '[' and ends at non-escaped ']' that is not part of a POSIX character set specifier
and that does not follow immediately after '['.

The following characters have a special meaning and need to be escaped if meant literally:

- (minus sign)

A range operator, except immediately after '[', where it loses its special meaning.

^

If immediately after the starting '[', denotes a complement: the whole character set will be
complemented. Otherwise literal '^'.

[:alnum:]

Characters for which 'isalnum' returns true .

[:alpha:]

Characters for which 'isalpha' returns true .

[:cntrl:]

Characters for which 'iscntrl' returns true .

[:digit:]

Characters for which 'isdigit' returns true .

[:graph:]

Characters for which 'isgraph' returns true .

[:lower:]

Characters for which 'islower' returns true .

[:print:]

Characters for which 'isprint' returns true .

[:punct:]

Characters for which 'ispunct' returns true .

[:space:]

Characters for which 'isspace' returns true .

[:upper:]

Characters for which 'isupper' returns true .

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

335

[:xdigit:]

Characters for which 'isxdigit' returns true .

Example: [[:xdigit:]XY] is typically equivalent to [0123456789ABCDEFabcdefXY] .

It is also possible to include the predefined escaped character sets into a newly defined one, so [\d\s]
matches digits and whitespace characters.

Also, escape sequences resulting in literals work inside character sets.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

336 Appendix C Egrep Syntax

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

337

Appendix D Audit Messages
This appendix lists the audit messages generated by the Connection Broker.

140 Server_hostkey
Level: informational
Origin: Tectia Server, Connection Broker

Server hostkey properties.

Default log facility: normal

Argument Description
Status Key failed.
Text Key file name
Text Key type.
Public key hash Public key hash (MD5).
Public key hash Public key hash (SHA-1).
Public key hash (SHA-256) Public key hash (SHA-256).
Text Error message.

1000 KEX_failure
Level: warning
Origin: Tectia Server, Connection Broker

The key exchange failed.

Default log facility: normal

Argument Description
Username User's login name (not present for first KEX)
Algorithm KEX algorithm name (not present if failure happens

before choosing the algorithm)

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

338 Appendix D Audit Messages

Argument Description
Text Error description
Session-Id Session identifier

1001 Algorithm_negotiation_failure
Level: warning
Origin: Tectia Server, Connection Broker

Algorithm negotiation failed - there was no common algorithm in the client's and server's lists.

Default log facility: normal

Argument Description
Username User's login name (not present for first KEX)
Algorithm Algorithm type
Client algorithms Client's algorithm list
Server algorithms Server's algorithm list
Session-Id Session identifier

1002 Algorithm_negotiation_success
Level: informational
Origin: Tectia Server, Connection Broker

Algorithm negotiation succeeded.

Default log facility: normal

Argument Description
Username User's login name (not present for first KEX)
Text Negotiated algorithms
Session-Id Session identifier

1003 KEX_success
Level: informational
Origin: Connection Broker

Key-exchange was successful.

Default log facility: normal

Argument Description
Algorithm Kex method name.
Session-Id Session identifier.
Protocol-session-Id Protocol session identifier.

1100 Certificate_validation_failure
Level: informational
Origin: Tectia Server, Connection Broker

A received certificate failed to validate correctly under any of the configured CAs.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

339

Default log facility: normal

Argument Description
Username User's login name (not present for first KEX)
Text Resulting search states for all configured CAs.
Session-Id Session identifier
Text X.509 certificate subject name.
Text X.509 certificate serial number.
Text X.509 certificate email altnames.
Text X.509 certificate UPN alternative names.

1101 Certificate_validation_success
Level: informational
Origin: Tectia Server, Connection Broker

A received certificate validated correctly under one or more configured CAs.

Default log facility: normal

Argument Description
Username User's login name
CA List A list of CAs under which the user's certificate

validated correctly.
Session-Id Session identifier
Text X.509 certificate subject name.
Text X.509 certificate serial number.
Text X.509 certificate email altnames.
Text X.509 certificate UPN alternative names.

1110 CM_find_started
Level: informational
Origin: Tectia Server, Connection Broker

A low-level search was started in the certificate validation subsystem.

Default log facility: normal

Argument Description
Ctx Search context
Search constraints Search constraints.

1111 CM_find_finished
Level: informational
Origin: Tectia Server, Connection Broker

A search was completed with a trace of sources used.

Default log facility: normal

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

340 Appendix D Audit Messages

Argument Description
Ctx The context pointer identifying the search
Text Search trace identifiying source used.

1112 CM_cert_not_in_search_interval
Level: informational
Origin: Tectia Server, Connection Broker

The certificate is not valid during the required time period.

Default log facility: normal

Argument Description
SubjectName Subject name of the certificate
Text Error description
Ctx Search context

1113 CM_certificate_revoked
Level: informational
Origin: Tectia Server, Connection Broker

A certificate was found to be revoked.

Default log facility: normal

Argument Description
SubjectName Subject name of the certificate
Ctx The context pointer of the search

1114 CM_cert_search_constraint_mismatch
Level: informational
Origin: Tectia Server, Connection Broker

The certificate did not satisfy the constraints set for the search.

Default log facility: normal

Argument Description
SubjectName Subject name of the certificate
Text Description of the mismatch
Ctx Search context

1115 CM_ldap_search_started
Level: informational
Origin: Tectia Server, Connection Broker

An LDAP search for a CRL or a sub-CA is being started.

Default log facility: normal

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

341

Argument Description
Text Search details

1116 CM_ldap_search_success
Level: informational
Origin: Tectia Server, Connection Broker

An LDAP search for a CRL or a sub-CA completed successfully.

Default log facility: normal

Argument Description
Text Search details

1117 CM_ldap_search_failure
Level: informational
Origin: Tectia Server, Connection Broker

The attempt to contact an LDAP server was unsuccessful.

Default log facility: normal

Argument Description
Text Error details

1118 CM_http_search_started
Level: informational
Origin: Tectia Server, Connection Broker

The certificate validation subsystem is initiating a search for a CRL or a sub-CA through the HTTP
protocol.

Default log facility: normal

Argument Description
Text Search target

1119 CM_http_search_success
Level: informational
Origin: Tectia Server, Connection Broker

An HTTP request for a CRL or a sub-CA completed successfully.

Default log facility: normal

Argument Description
Text Status message detailing what was being retrieved

1120 CM_http_search_failure
Level: informational
Origin: Tectia Server, Connection Broker

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

342 Appendix D Audit Messages

An HTTP request for a CRL or a sub-CA failed.

Default log facility: normal

Argument Description
Text Error details

1121 CM_crl_added
Level: informational
Origin: Tectia Server, Connection Broker

A new CRL was successfully added to the certificate validation subsystem.

Default log facility: normal

Argument Description
Text CRL's issuer and validity period

1122 Certificate_end_point_id_check_success
Level: informational
Origin: Connection Broker

End point identity check succeeded.

Default log facility: normal

Argument Description
Server Host name
Text Explanatory message

1123 Certificate_end_point_id_check_warning
Level: informational
Origin: Connection Broker

Certificate end point identity check warning.

Default log facility: normal

Argument Description
Server Host name
Text Warning message

1124 Certificate_end_point_id_check_failure
Level: informational
Origin: Connection Broker

Certificate end point identity check failure.

Default log facility: normal

Argument Description
Server Host name

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

343

Argument Description
Text Error message

1200 Key_store_create
Level: informational
Origin: Tectia Server, Connection Broker

Key store created.

Default log facility: normal

1201 Key_store_create_failed
Level: warning
Origin: Tectia Server, Connection Broker

Key store creation failed.

Default log facility: normal

1202 Key_store_destroy
Level: informational
Origin: Tectia Server, Connection Broker

Key store destroyed.

Default log facility: normal

1204 Key_store_add_provider
Level: informational
Origin: Tectia Server, Connection Broker

Added a provider to the key store.

Default log facility: normal

Argument Description
Type Provider type

1205 Key_store_add_provider_failed
Level: warning
Origin: Tectia Server, Connection Broker

Adding a provider to the key store failed.

Default log facility: normal

Argument Description
Type Provider type
EK error Error message

1206 Key_store_remove_provider
Level: informational

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

344 Appendix D Audit Messages

Origin: Tectia Server, Connection Broker

Removed a provider from the key store.

Default log facility: normal

Argument Description
Init info Provider name

1208 Key_store_decrypt
Level: informational
Origin: Tectia Server, Connection Broker

A key was used successfully for decryption.

Default log facility: normal

Argument Description
Key path Key path
Fwd path Fwd path

1209 Key_store_decrypt_failed
Level: warning
Origin: Tectia Server, Connection Broker

A key was used unsuccessfully for decryption.

Default log facility: normal

Argument Description
Key path Key path
Fwd path Fwd path
Crypto error Error string

1210 Key_store_sign
Level: informational
Origin: Tectia Server, Connection Broker

A key was used successfully for signing.

Default log facility: normal

Argument Description
Key path Key path
Fwd path Fwd path
Public key hash Public key hash (SHA-1)
Public key hash (SHA-256) Public key hash (SHA-256)

1211 Key_store_sign_failed
Level: warning
Origin: Tectia Server, Connection Broker

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

345

A key was used unsuccessfully for signing.

Default log facility: normal

Argument Description
Key path Key path
Fwd path Fwd path
Crypto error Error string
Public key hash Public key hash (SHA-1)
Public key hash (SHA-256) Public key hash (SHA-256)

1212 Key_store_sign_digest
Level: informational
Origin: Tectia Server, Connection Broker

A key was used successfully for signing a digest.

Default log facility: normal

Argument Description
Key path Key path
Fwd path Fwd path
Public key hash Public key hash (SHA-1)
Public key hash (SHA-256) Public key hash (SHA-256)

1213 Key_store_sign_digest_failed
Level: warning
Origin: Tectia Server, Connection Broker

A key was used unsuccessfully for signing a digest.

Default log facility: normal

Argument Description
Key path Key path
Fwd path Fwd path
Crypto error Error string
Public key hash Public key hash (SHA-1)
Public key hash (SHA-256) Public key hash (SHA-256)

1214 Key_store_ek_provider_failure
Level: warning
Origin: Tectia Server, Connection Broker

External key provider failure.

Default log facility: normal

Argument Description
Key path Key path

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

346 Appendix D Audit Messages

Argument Description
Text Key label
Text Error description

1220 Key_store_certificate_issued
Level: informational
Origin: Tectia Server, Connection Broker

Internal CA issued a X.509 certificate.

Default log facility: normal

Argument Description
Text CA name
Text Principal name.
Text Expiration date.
Text SHA-256 hash of the certificate.

1221 Key_store_certificate_revoked
Level: informational
Origin: Tectia Server, Connection Broker

Internal CA revoked a certificate.

Default log facility: normal

Argument Description
Text CA name
Text Principal name.
Text Expiration date.
Text SHA-256 hash of the certificate.

1300 Channel_inbound_statistics
Level: informational
Origin: Connection Broker, Tectia Server

Statistics for the inbound side of a channel (traffic arriving from the network)

Default log facility: normal

Argument Description
Username User's login name
Session-Id Session identifier
Channel Id Local channel id
Packet count Protocol packet count
Packet size Average protocol packet payload size

1301 Channel_outbound_statistics
Level: informational
Origin: Connection Broker, Tectia Server

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

347

Statistics for the outbound side of a channel (traffic going to the network)

Default log facility: normal

Argument Description
Username User's login name
Session-Id Session identifier
Channel Id Local channel id
Packet count Protocol packet count
Packet size Average protocol packet payload size
Packet size Final size of outbound channel buffer

3000 Sft_client_start
Level: debug
Origin: Tectia Secure File Transfer clients

File transfer client program was started.

Default log facility: user

3001 Sftc_create_file
Level: debug
Origin: Tectia Secure File Transfer clients

A new file was created.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
File Path to target file
Text (Optional) error message and/or additional

information

3002 Sftc_truncate_file
Level: debug
Origin: Tectia Secure File Transfer clients

A file was truncated.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

348 Appendix D Audit Messages

Argument Description
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
File Path to file
Text (Optional) error message and/or additional

information

3003 Sftc_modify_file_attrs
Level: informational
Origin: Tectia Secure File Transfer clients

A file attribute was modified.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
File Path to file
Text (Optional) error message and/or additional

information

3004 Sftc_delete_file
Level: notice
Origin: Tectia Secure File Transfer clients

A file was deleted.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
File Path to file
Text (Optional) error message and/or additional

information

3005 Sftc_create_dir

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

349

Level: debug
Origin: Tectia Secure File Transfer clients

A directory was created.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
Dir Path to directory
Text (Optional) error message and/or additional

information

3006 Sftc_remove_dir
Level: notice
Origin: Tectia Secure File Transfer clients

A directory was removed.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
Dir Path to directory
Text (Optional) error message and/or additional

information

3007 Sftc_copy_dir_start
Level: notice
Origin: Tectia Secure File Transfer clients

Copying a directory initiated.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

350 Appendix D Audit Messages

Argument Description
OpID Operation ID
Source Connection Source connection
From Path to source directory
Target Connection Target connection
To Path to target directory
Text (Optional) error message and/or additional

information

3008 Sftc_copy_dir_finished
Level: notice
Origin: Tectia Secure File Transfer clients

Copying a directory completed.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Source Connection Source connection
From Path to source directory
Target Connection Target connection
To Path to target directory
Duration Duration of copying the directory
Files Number of files that were copied
Data Amount of data copied in bytes
Speed Copy speed in KiB/s
Text (Optional) error message and/or additional

information

3009 Sftc_move_dir_start
Level: notice
Origin: Tectia Secure File Transfer clients

Moving a directory initiated.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Source Connection Source connection

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

351

Argument Description
From Path to source directory
Target Connection Target connection
To Path to target directory
Text (Optional) error message and/or additional

information

3010 Sftc_move_dir_finished
Level: notice
Origin: Tectia Secure File Transfer clients

Moving a directory completed.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Source Connection Source connection
From Path to source directory
Target Connection Target connection
To Path to target directory
Duration Duration of moving the directory
Files Number of files that were moved
Data Amount of data transferred in bytes
Speed Transfer speed in KiB/s
Text (Optional) error message and/or additional

information

3011 Sftc_copy_file_start
Level: informational
Origin: Tectia Secure File Transfer clients

Copying a file initiated.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Source Connection Source connection
From Path to source file
Target Connection Target connection

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

352 Appendix D Audit Messages

Argument Description
To Path to target file
Text (Optional) error message and/or additional

information

3012 Sftc_copy_file_finished
Level: notice
Origin: Tectia Secure File Transfer clients

Copying a file completed.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Source Connection Source connection
From Path to source file
Target Connection Target connection
To Path to target file
Duration Duration
Data Amount of data copied in bytes
Speed Copy speed in KiB/s
Text (Optional) error message and/or additional

information

3013 Sftc_move_file_start
Level: informational
Origin: Tectia Secure File Transfer clients

Moving a file initiated.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Source Connection Source connection
From Path to source file
Target Connection Target connection
To Path to target file
Text (Optional) error message and/or additional

information

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

353

3014 Sftc_move_file_finished
Level: notice
Origin: Tectia Secure File Transfer clients

Moving a file completed.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Source Connection Source connection
From Path to source file
Target Connection Target connection
To Path to target file
Duration Duration of moving the file
Data Amount of data transferred in bytes
Speed Transfer speed in KiB/s
Text (Optional) error message and/or additional

information

3015 Sftc_rename_file
Level: informational
Origin: Tectia Secure File Transfer clients

A file was renamed.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
File Path to file
Text (Optional) error message and/or additional

information

3017 Sft_client_command
Level: debug
Origin: Tectia Secure File Transfer clients

File transfer client command.

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

354 Appendix D Audit Messages

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Text Command given on the command line or defined in

a batch file

3018 Sftc_open_dir
Level: debug
Origin: Tectia Secure File Transfer clients

A directory was opened.

Default log facility: user

Argument Description
Local username Local user name
Program Secure file transfer client program
Pid Client process ID
OpID Operation ID
Status Result (SUCCESS or FAILED)
Connection Target connection
Dir Path to directory
Text (Optional) error message and/or additional

information

6000 Broker_client_connect
Level: informational
Origin: Connection Broker

A client connected to the Broker.

Default log facility: discard

Argument Description
Client Client name
Pid Process id
Local username Local user name

6001 Broker_client_connect_failed
Level: warning
Origin: Connection Broker

A client attempted to connect unsuccessfully to the Broker.

Default log facility: normal

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

355

Argument Description
Client Client name
Pid Process id
Local username Local user name
Text Reason

6002 Broker_client_disconnect
Level: informational
Origin: Connection Broker

A client disconnected from the Broker.

Default log facility: discard

Argument Description
Client Client name
Pid Process id
Local username Local user name

6004 Broker_exec_channel_open
Level: informational
Origin: Connection Broker

The Broker opened an exec channel.

Default log facility: discard

Argument Description
Client Client name
Pid Client process ID
Server Server host
Server Port Server port
Remote username Remote user name
Local username Local user name
Command Command
Text Exec parameters
Channel Id Channel ID
Session-Id Session ID

6005 Broker_exec_channel_open_failed
Level: warning
Origin: Connection Broker

The Broker failed to open an exec channel for a client.

Default log facility: normal

Argument Description
Client Client name

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

356 Appendix D Audit Messages

Argument Description
Pid Client process ID
Server Server host
Server Port Server port
Remote username Remote user name
Local username Local user name
Command Command
Text Exec parameters
Channel Id Channel ID
Text Reason
Session-Id Session ID

6006 Broker_tunnel_open
Level: informational
Origin: Connection Broker

The Broker opened a tunnel for a client.

Default log facility: discard

Argument Description
Client Client name
Pid Client process ID
Server Server host
Server Port Server port
Remote username Remote user name
Local username Local user name
Dst Destination host
Dst Port Destination port
Tunnel type Tunnel type
Session-Id Session ID

6007 Broker_tunnel_open_failed
Level: warning
Origin: Connection Broker

The Broker failed to open a tunnel for a client.

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Server Server host
Server Port Server port
Remote username Remote user name
Local username Local user name
Dst Destination host

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

357

Argument Description
Dst Port Destination port
Tunnel type Tunnel type
Text Reason
Session-Id Session ID

6008 Broker_tunnel_listener_open
Level: informational
Origin: Connection Broker

The Broker opened a tunnel listener for a client.

Default log facility: discard

Argument Description
Client Client name
Pid Client process ID
Server Server host
Server Port Server port
Remote username Remote user name
Local username Local user name
Listener Listener host
Listener Port Listener port
Dst Destination host
Dst Port Destination port
Tunnel type Tunnel type
Text Tunnel listener parameters
Session-Id Session ID

6009 Broker_tunnel_listener_open_failed
Level: warning
Origin: Connection Broker

The Broker failed to open a tunnel listener for a client.

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Server Server host
Server Port Server port
Remote username Remote user name
Local username Local user name
Listener Listener host
Listener Port Listener port
Dst Destination host
Dst Port Destination port

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

358 Appendix D Audit Messages

Argument Description
Tunnel type Tunnel type
Text Tunnel listener parameters
Text Reason
Session-Id Session ID

6010 Broker_channel_fd_strip
Level: informational
Origin: Connection Broker

The Broker destroyed a channel object (and returned the underlying fd to the client).

Default log facility: discard

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Text Channel permanent?
Local username Local user name
Session-Id Session ID

6011 Broker_channel_fd_strip_failed
Level: warning
Origin: Connection Broker

The Broker failed to destroy a channel object (and return the underlying fd to the client).

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Text Channel permanent?
Local username Local user name
Text Reason
Session-Id Session ID

6012 Broker_channel_control
Level: informational
Origin: Connection Broker

The Broker sent a channel control message.

Default log facility: discard

Argument Description
Client Client name

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

359

Argument Description
Pid Client process ID
Channel Id Channel ID
Command Command
Args Arguments
Local username Local user name
Session-Id Session ID

6013 Broker_channel_control_failed
Level: warning
Origin: Connection Broker

The Broker failed to send a channel control message.

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Command Command
Args Arguments
Local username Local user name
Text Reason
Session-Id Session ID

6014 Broker_channel_close
Level: informational
Origin: Connection Broker

The Broker closed a channel.

Default log facility: discard

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Exit Value Exit value
Local username Local user name
Session-Id Session ID

6015 Broker_channel_close_failed
Level: warning
Origin: Connection Broker

The Broker failed to close a channel.

Default log facility: normal

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

360 Appendix D Audit Messages

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Local username Local user name
Text Reason

6018 Broker_server_version_request
Level: informational
Origin: Connection Broker

The Broker requested (and got) the server version.

Default log facility: discard

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Ver Version
Local username Local user name
Session-Id Session ID

6019 Broker_server_version_request_failed
Level: warning
Origin: Connection Broker

The Broker failed to get the server version.

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Local username Local user name
Text Reason
Session-Id Session ID

6020 Broker_channel_process_exit
Level: informational
Origin: Connection Broker

Channel process exit request was successful.

Default log facility: discard

Argument Description
Client Client name

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

361

Argument Description
Pid Client process ID
Local username Local user name
Session-Id Session ID

6021 Broker_channel_process_exit_failed
Level: warning
Origin: Connection Broker

Channel process exit request failed.

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Text Reason
Local username Local user name
Session-Id Session ID

6025 Broker_connector_license_check_failed
Level: warning
Origin: Connection Broker

Connector license check failed.

Default log facility: normal

Argument Description
Text Error message
Session-Id Session id

6026 Broker_server_rekey
Level: notice
Origin: Connection Broker

The Broker requested rekeying and it was successful.

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Local username Local user name
Session-Id Session ID

6027 Broker_server_rekey_failed
Level: warning

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

362 Appendix D Audit Messages

Origin: Connection Broker

The Broker requested rekeying but it failed.

Default log facility: normal

Argument Description
Client Client name
Pid Client process ID
Channel Id Channel ID
Local username Local user name
Text Reason
Session-Id Session ID

6035 Broker_publickey_upload
Level: informational
Origin: Connection Broker

Public key is uploaded.

Default log facility: normal

Argument Description
Client Client name
Pid Client process id
Local username Local user name
Public key hash Public key hash
Public key hash (SHA-256) Public key hash (SHA-256)
Server Server name
Server Port Server port
Remote username Remote user name
File name Public key file name

6100 Broker_starting
Level: notice
Origin: Connection Broker

The Broker is starting.

Default log facility: normal

Argument Description
Local username Local user name

6101 Broker_start_failed
Level: warning
Origin: Connection Broker

Starting the Broker failed.

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

363

Default log facility: normal

Argument Description
Local username Local user name
Success | Error Error code
Text Error message

6102 Broker_running
Level: notice
Origin: Connection Broker

The Broker is running.

Default log facility: normal

Argument Description
Local username Local user name
Text Message text

6104 Broker_stopping
Level: notice
Origin: Connection Broker

The Broker is stopping.

Default log facility: normal

Argument Description
Local username Local user name

6106 Broker_reconfig_started
Level: notice
Origin: Connection Broker

Reconfiguration started.

Default log facility: normal

Argument Description
Local username Local user name

6108 Broker_reconfig_finished
Level: notice
Origin: Connection Broker

Reconfiguration finished.

Default log facility: normal

Argument Description
Local username Local user name

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

364 Appendix D Audit Messages

Argument Description
Success | Error Error code

6114 Broker_config_deprecated_element
Level: warning
Origin: Connection Broker

The Broker config contains a deprecated element.

Default log facility: normal

Argument Description
Text Event description.

6200 Broker_tcp_connect
Level: informational
Origin: Connection Broker

Broker TCP connection attempt was successful.

Default log facility: discard

Argument Description
Dst Destination host
Dst Port Destination port
Src Port Source port
Local username Local username

6201 Broker_tcp_connect_failed
Level: warning
Origin: Connection Broker

Broker TCP connection attempt failed.

Default log facility: normal

Argument Description
Dst Destination host
Dst Port Destination port
Local username Local username
NIO error NIO error

6204 Broker_transport_connect
Level: informational
Origin: Connection Broker

A transport was connected through TCP.

Default log facility: discard

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

365

Argument Description
Dst Destination host
Dst Port Destination port
Remote username Remote username
Src Port Source port
Local username Local username
Session-Id Session ID

6206 Broker_transport_gateway_connect
Level: informational
Origin: Connection Broker

A transport was connected through a gateway handle.

Default log facility: discard

Argument Description
Dst Destination host
Dst Port Destination port
Remote username Remote username
Local username Local username
Session-Id Session ID

6208 Broker_connection_connect
Level: informational
Origin: Connection Broker

The Broker got successfully a Secure Shell connection up.

Default log facility: discard

Argument Description
Dst Destination host
Dst Port Destination port
Local username Local user name
Remote username Remote user name
Uses gateway? Is this going through a gateway handle
Session-Id Session ID

6209 Broker_connection_connect_failed
Level: warning
Origin: Connection Broker

The Broker failed to get a Secure Shell connection up.

Default log facility: normal

Argument Description
Dst Destination host

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

366 Appendix D Audit Messages

Argument Description
Dst Port Destination port
Local username Local user name
Remote username Remote user name
Uses gateway? Is this going through a gateway handle
Session-Id Session ID
Text Error code

6210 Broker_connection_disconnect
Level: informational
Origin: Connection Broker

A Secure Shell connection initiated by the Broker was disconnected.

Default log facility: discard

Argument Description
Local username Local user
Session-Id Session identifier
Dst Destination host
Dst Port Destination port
Remote username Remote username

6211 Broker_unknown_hostkey_accepted
Level: warning
Origin: Connection Broker

* The Broker accepted an unknown hostkey without user interaction * because of configuration.

Default log facility: normal

Argument Description
Text Key digest
Dst Destination host
Dst Port Destination port
Local username Local user name
Remote username Remote user name
Text SHA-256 key digest

6212 Broker_new_hostkey
Level: warning
Origin: Connection Broker

* First connection to a server or this server hostkey was never * saved before.

Default log facility: normal

Argument Description
Text Key digest

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

367

Argument Description
Dst Destination host
Dst Port Destination port
Local username Local user name
Remote username Remote user name
Text SHA-256 key digest

6213 Broker_hostkey_changed
Level: warning
Origin: Connection Broker

* Server hostkey is different than the saved hostkey.

Default log facility: normal

Argument Description
Text Key digest
Dst Destination host
Dst Port Destination port
Local username Local user name
Remote username Remote user name
Text SHA-256 key digest

6214 Broker_hostkey_rotation
Level: informational
Origin: Connection Broker

Client has added or removed host key from known hosts due to hostkey advertisement from the server.

Default log facility: normal

Argument Description
Text Event description.
Dst Destination host
Dst Port Destination port
Local username Local user name
Text SHA-1 fingerprint.
Text SHA-256 key digest

6301 Broker_userauth_failure
Level: warning
Origin: Connection Broker

User authentication failed.

Default log facility: normal

Argument Description
Text Reason

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

368 Appendix D Audit Messages

Argument Description
Session-Id Session identifier

6302 Broker_userauth_method_success
Level: informational
Origin: Connection Broker

A user authentication method succeeded.

Default log facility: discard

Argument Description
Text Authentication method
Session-Id Session identifier

6303 Broker_userauth_method_failure
Level: warning
Origin: Connection Broker

A user authentication method failed.

Default log facility: discard

Argument Description
Text Authentication method
Text Reason
Session-Id Session identifier

6401 Connector_filter_rule
Level: informational
Origin: Connection Broker

FTP_CAPTURE not tunneling

Default log facility: discard

Argument Description
Connector Connector action
Dst Address
Dst Port Port

6402 Capture_init_info
Level: informational
Origin: Connection Broker

Capture failed to start

Default log facility: discard

Argument Description
Text Error message

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

369

Appendix E Default and Supported
SSH Algorithms
This section describes the SSH algorithms supported by Tectia products.

E.1 Ciphers

Table E.1. Default ciphers (in order of client-side preference)

Name in XML Name in GUI FIPS

crypticore128@ssh.com CryptiCore (Tectia)
aes128-gcm@openssh.com AES-128-GCM (OpenSSH) •
aes256-gcm@openssh.com AES-256-GCM (OpenSSH) •
AEAD_AES_128_GCM AEAD_AES_128_GCM •
AEAD_AES_256_GCM AEAD_AES_256_GCM •
aes128-ctr AES-128-CTR •
aes192-ctr AES-192-CTR •
aes256-ctr AES-256-CTR •

Table E.2. All supported ciphers

Name in XML Name in GUI FIPS

3des-cbc 3DES •
AEAD_AES_128_GCM AEAD_AES_128_GCM •
AEAD_AES_256_GCM AEAD_AES_256_GCM •
aes128-cbc AES-128-CBC •
aes128-ctr AES-128-CTR •

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

370 Appendix E Default and Supported SSH Algorithms

Name in XML Name in GUI FIPS

aes128-gcm@openssh.com AES-128-GCM (OpenSSH) •
aes192-cbc AES-192-CBC •
aes192-ctr AES-192-CTR •
aes256-cbc AES-256-CBC •
aes256-ctr AES-256-CTR •
aes256-gcm@openssh.com AES-256-GCM (OpenSSH) •
arcfour Arcfour
blowfish-cbc Blowfish
crypticore128@ssh.com CryptiCore (Tectia)
seed-cbc@ssh.com SEED (Tectia)
twofish128-cbc Twofish-128
twofish192-cbc Twofish-192
twofish256-cbc Twofish-256
twofish-cbc Twofish

E.2 Key-Exchange Algorithms

Table E.3. Default KEXs (in order of client-side preference)

Name in XML Name in GUI FIPS

mlkem1024nistp384-sha384 PQC: mlkem1024nistp384-sha384 •
mlkem768nistp256-sha256 PQC: mlkem768nistp256-sha256 •
mlkem768x25519-sha256 PQC: mlkem768x25519-sha256 •
ecdh-nistp521-kyber1024-sha512@ssh.com PQC: ecdh-nistp521-kyber1024-sha512

(Tectia)
•

curve25519-frodokem1344-sha512@ssh.com PQC: curve25519-frodokem1344-sha512
(Tectia)

•

sntrup761x25519-sha512@openssh.com PQC: sntrup761x25519-sha512 (OpenSSH) •
diffie-hellman-group-exchange-sha256 DH-GEX-SHA256
diffie-hellman-group16-sha512 DH-Group16-SHA512 •
diffie-hellman-group18-sha512 DH-Group18-SHA512 •
diffie-hellman-group14-sha256 DH-Group14-SHA256 •
diffie-hellman-group14-sha256@ssh.com DH-Group14-SHA256 (Tectia) •
curve25519-sha256 Curve25519-sha256 •
curve25519-sha256@libssh.org Curve25519-sha256 (libssh) •

Table E.4. All supported KEXs

Name in XML Name in GUI FIPS

curve25519-frodokem1344-sha512@ssh.com PQC: curve25519-frodokem1344-sha512
(Tectia)

•

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

Message-Authentication Codes 371

Name in XML Name in GUI FIPS

curve25519-sha256 Curve25519-sha256 •
curve25519-sha256@libssh.org Curve25519-sha256 (libssh) •
curve448-kyber1024-sha512@ssh.com PQC: curve448-kyber1024-sha512 (Tectia) •
diffie-hellman-group14-sha1 DH-Group14-SHA1 •
diffie-hellman-group14-sha224@ssh.com DH-Group14-SHA224 (Tectia) •
diffie-hellman-group14-sha256 DH-Group14-SHA256 •
diffie-hellman-group14-sha256@ssh.com DH-Group14-SHA256 (Tectia) •
diffie-hellman-group15-sha256@ssh.com DH-Group15-SHA256 (Tectia) •
diffie-hellman-group15-sha384@ssh.com DH-Group15-SHA384 (Tectia) •
diffie-hellman-group16-sha384@ssh.com DH-Group16-SHA384 (Tectia) •
diffie-hellman-group16-sha512 DH-Group16-SHA512 •
diffie-hellman-group16-sha512@ssh.com DH-Group16-SHA512 (Tectia) •
diffie-hellman-group18-sha512 DH-Group18-SHA512 •
diffie-hellman-group18-sha512@ssh.com DH-Group18-SHA512 (Tectia) •
diffie-hellman-group1-sha1 DH-Group1-SHA1
diffie-hellman-group-exchange-sha1 DH-GEX-SHA1
diffie-hellman-group-exchange-
sha224@ssh.com

DH-GEX-SHA224 (Tectia)

diffie-hellman-group-exchange-sha256 DH-GEX-SHA256
diffie-hellman-group-exchange-
sha384@ssh.com

DH-GEX-SHA384 (Tectia)

diffie-hellman-group-exchange-
sha512@ssh.com

DH-GEX-SHA512 (Tectia)

ecdh-nistp521-kyber1024-sha512@ssh.com PQC: ecdh-nistp521-kyber1024-sha512
(Tectia)

•

ecdh-sha2-nistp256 ECDH-NISTP256 •
ecdh-sha2-nistp384 ECDH-NISTP384 •
ecdh-sha2-nistp521 ECDH-NISTP521 •
mlkem1024nistp384-sha384 PQC: mlkem1024nistp384-sha384 •
mlkem768nistp256-sha256 PQC: mlkem768nistp256-sha256 •
mlkem768x25519-sha256 PQC: mlkem768x25519-sha256 •
sntrup761x25519-sha512@openssh.com PQC: sntrup761x25519-sha512 (OpenSSH) •

E.3 Message-Authentication Codes

Table E.5. Default MACs (in order of client-side preference)

Name in XML Name in GUI FIPS

crypticore-mac@ssh.com CryptiCore (Tectia)
hmac-sha2-256 HMAC-SHA2-256 •

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

372 Appendix E Default and Supported SSH Algorithms

Name in XML Name in GUI FIPS

hmac-sha256-2@ssh.com HMAC-SHA256-2 (Tectia) •
hmac-sha2-512 HMAC-SHA2-512 •
hmac-sha512@ssh.com HMAC-SHA512 (Tectia) •
hmac-sha1 HMAC-SHA1 •

Table E.6. All supported MACs

Name in XML Name in GUI FIPS

crypticore-mac@ssh.com CryptiCore (Tectia)
hmac-md5 HMAC-MD5
hmac-md5-96 HMAC-MD5-96
hmac-md5-96-etm@openssh.com HMAC-MD5-96-ETM (OpenSSH)
hmac-md5-etm@openssh.com HMAC-MD5-ETM (OpenSSH)
hmac-sha1 HMAC-SHA1 •
hmac-sha1-96 HMAC-SHA1-96
hmac-sha1-96-etm@openssh.com HMAC-SHA1-96-ETM (OpenSSH)
hmac-sha1-etm@openssh.com HMAC-SHA1-ETM (OpenSSH) •
hmac-sha224@ssh.com HMAC-SHA224 (Tectia)
hmac-sha2-256 HMAC-SHA2-256 •
hmac-sha2-256-etm@openssh.com HMAC-SHA2-256-ETM (OpenSSH) •
hmac-sha2-512 HMAC-SHA2-512 •
hmac-sha2-512-etm@openssh.com HMAC-SHA2-512-ETM (OpenSSH) •
hmac-sha256@ssh.com HMAC-SHA256 (Tectia/Old)
hmac-sha256-2@ssh.com HMAC-SHA256-2 (Tectia)
hmac-sha384@ssh.com HMAC-SHA384 (Tectia)
hmac-sha512@ssh.com HMAC-SHA512 (Tectia)

E.4 Host-Key and Public Key Signature Algorithms

Table E.7. Default host-key algorithms (in order of client-side preference)

Name in XML Name in GUI FIPS

rsa-sha2-512 rsa-sha2-512 •
rsa-sha2-256 rsa-sha2-256 •
ssh-rsa-sha256@ssh.com ssh-rsa-sha256 (Tectia) •
ecdsa-sha2-nistp521 ecdsa-sha2-nistp521 •
ecdsa-sha2-nistp384 ecdsa-sha2-nistp384 •
ecdsa-sha2-nistp256 ecdsa-sha2-nistp256 •
x509v3-sign-rsa-sha256@ssh.com x509v3-sign-rsa-sha256 (Tectia) •
x509v3-ecdsa-sha2-nistp256 x509v3-ecdsa-sha2-nistp256 •

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

373

Name in XML Name in GUI FIPS

x509v3-ecdsa-sha2-nistp384 x509v3-ecdsa-sha2-nistp384 •
x509v3-ecdsa-sha2-nistp521 x509v3-ecdsa-sha2-nistp521 •
x509v3-rsa2048-sha256 x509v3-rsa2048-sha256 •
ssh-ed25519 ssh-ed25519 •
ecdsa-sha2-nistp256-cert-v01@openssh.com ecdsa-sha2-nistp256-cert-v01@openssh.com •
ecdsa-sha2-nistp384-cert-v01@openssh.com ecdsa-sha2-nistp384-cert-v01@openssh.com •
ecdsa-sha2-nistp521-cert-v01@openssh.com ecdsa-sha2-nistp521-cert-v01@openssh.com •
ssh-ed25519-cert-v01@openssh.com ssh-ed25519-cert-v01@openssh.com •
rsa-sha2-256-cert-v01@openssh.com rsa-sha2-256-cert-v01@openssh.com •
rsa-sha2-512-cert-v01@openssh.com rsa-sha2-512-cert-v01@openssh.com •

Table E.8. All supported host-key and public key signature algorithms

Name in XML Name in GUI FIPS

ecdsa-sha2-nistp256 ecdsa-sha2-nistp256 •
ecdsa-sha2-nistp256-cert-v01@openssh.com ecdsa-sha2-nistp256-cert-v01@openssh.com •
ecdsa-sha2-nistp384 ecdsa-sha2-nistp384 •
ecdsa-sha2-nistp384-cert-v01@openssh.com ecdsa-sha2-nistp384-cert-v01@openssh.com •
ecdsa-sha2-nistp521 ecdsa-sha2-nistp521 •
ecdsa-sha2-nistp521-cert-v01@openssh.com ecdsa-sha2-nistp521-cert-v01@openssh.com •
rsa-sha2-256 rsa-sha2-256 •
rsa-sha2-256-cert-v01@openssh.com rsa-sha2-256-cert-v01@openssh.com •
rsa-sha2-512 rsa-sha2-512 •
rsa-sha2-512-cert-v01@openssh.com rsa-sha2-512-cert-v01@openssh.com •
ssh-dss ssh-dss
ssh-dss-cert-v01@openssh.com ssh-dss-cert-v01@openssh.com
ssh-dss-sha224@ssh.com ssh-dss-sha224 (Tectia) •
ssh-dss-sha256@ssh.com ssh-dss-sha256 (Tectia) •
ssh-dss-sha384@ssh.com ssh-dss-sha384 (Tectia) •
ssh-dss-sha512@ssh.com ssh-dss-sha512 (Tectia) •
ssh-ed25519 ssh-ed25519 •
ssh-ed25519-cert-v01@openssh.com ssh-ed25519-cert-v01@openssh.com •
ssh-rsa ssh-rsa
ssh-rsa-cert-v01@openssh.com ssh-rsa-cert-v01@openssh.com
ssh-rsa-sha224@ssh.com ssh-rsa-sha224 (Tectia) •
ssh-rsa-sha256@ssh.com ssh-rsa-sha256 (Tectia) •
ssh-rsa-sha384@ssh.com ssh-rsa-sha384 (Tectia) •
ssh-rsa-sha512@ssh.com ssh-rsa-sha512 (Tectia) •
x509v3-ecdsa-sha2-nistp256 x509v3-ecdsa-sha2-nistp256 •
x509v3-ecdsa-sha2-nistp384 x509v3-ecdsa-sha2-nistp384 •

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

374 Appendix E Default and Supported SSH Algorithms

Name in XML Name in GUI FIPS

x509v3-ecdsa-sha2-nistp521 x509v3-ecdsa-sha2-nistp521 •
x509v3-rsa2048-sha256 x509v3-rsa2048-sha256 •
x509v3-sign-dss x509v3-sign-dss
x509v3-sign-dss-sha224@ssh.com x509v3-sign-dss-sha224 (Tectia) •
x509v3-sign-dss-sha256@ssh.com x509v3-sign-dss-sha256 (Tectia) •
x509v3-sign-dss-sha384@ssh.com x509v3-sign-dss-sha384 (Tectia) •
x509v3-sign-dss-sha512@ssh.com x509v3-sign-dss-sha512 (Tectia) •
x509v3-sign-rsa x509v3-sign-rsa
x509v3-sign-rsa-sha224@ssh.com x509v3-sign-rsa-sha224 (Tectia) •
x509v3-sign-rsa-sha256@ssh.com x509v3-sign-rsa-sha256 (Tectia) •
x509v3-sign-rsa-sha384@ssh.com x509v3-sign-rsa-sha384 (Tectia) •
x509v3-sign-rsa-sha512@ssh.com x509v3-sign-rsa-sha512 (Tectia) •
x509v3-ssh-dss x509v3-ssh-dss
x509v3-ssh-rsa x509v3-ssh-rsa

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

375

Appendix F Removing OpenSSL from
Tectia Client

F.1 Background Information

F.1.1 Should I Remove the OpenSSL Library?

When Tectia Client is not used in the FIPS compliant mode (for more information, see Section 3.6), the
OpenSSL cryptographic library is not needed and can be removed.

If you do not use the FIPS mode and want to remove OpenSSL from your Tectia Client installation, the
following sections provide per-platform instructions for doing it.

F.1.2 What Happens If I Remove the OpenSSL Library?

Once the OpenSSL cryptographic library is removed, if Tectia Client is configured to run in the FIPS
compliant mode, it will refuse to start.

F.2 Removing the OpenSSL Cryptographic Library

F.2.1 Linux and Solaris

To remove the OpenSSL cryptographic library from Tectia Client on Unix, first disable FIPS mode, if it
has been enabled in configuration.

Remove OpenSSL FIPS libraries with the following commands:

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

376 Appendix F Removing OpenSSL from Tectia Client

/opt/tectia/sbin/ssh-modeset fips-mode off

/opt/tectia/sbin/ssh-modeset fips-remove

F.2.2 Windows

To remove the OpenSSL cryptographic library from Tectia Client on Windows, first disable FIPS mode,
if it has been enabled, using the Configuration GUI.

Note

If both Tectia Client and Tectia Server are installed, ensure that user-specific Connection Broker
configuration(s) have FIPS mode disabled and that the system wide Tectia FIPSMODE switch
file is removed. The FIPSMODE file is automatically removed when FIPS mode is disabled
from the Tectia Server Configuration GUI (for more information, see Section 3.6).

Changing Optional Installation Modules for Tectia on Windows

To modify Tectia Client and Server optional FIPS module in Windows environment, follow the
instructions below:

1. From the Windows Start menu, open the Control Panel and click Programs and Features.

2. In the list of installed programs, select Tectia Client and click Change.

3. In the installer click Modify.

4. Select Tectia Client > FIPS optional module and change it to Entire feature will be unvailable.

5. Click Next and Install to proceed with the Modify installation that will remove the Tectia FIPS support
module(s).

OpenSSL files removed from Tectia Client on Windows, when FIPS support module is uninstalled:

Note that <INSTALLDIR> indicates the default Tectia installation directory on 64-bit Windows versions:
C:\Program Files (x86)\SSH Communications Security\SSH Tectia

• <INSTALLDIR>\SSH Tectia AUX\Plugins\<x>.<y>.<z>.\sshcrypto1.dll

(<x>, <y>, <z> and indicate the Tectia Client version and build numbers, for example 7.0.0.123.)

• <INSTALLDIR>\SSH Tectia AUX\fips\fips.dll

• <INSTALLDIR>\SSH Tectia AUX\fips\openssl.cnf

• <INSTALLDIR>\SSH Tectia AUX\libcrypto-3.dll

• <INSTALLDIR>\SSH Tectia Broker\libcrypto-3.dll

• <INSTALLDIR>\SSH Tectia Client\libcrypto-3.dll

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

377

Appendix G Open Source Software
License Acknowledgements
SSH Communications Security Corporation acknowledges the following Open Source Software used in
the Tectia client/server solution.

BSD Software

This product includes software developed by the University of California, Berkeley and its
contributors.

DES

This product includes software developed by Eric Young eay@cryptsoft.com.

ICU

Copyright © 1995-2016 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the
above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

378 Appendix G Open Source Software License Acknowledgements

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM,
OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

OpenSSL

OpenSSL 3.0 is licensed under the Apache License 2.0.

Apache License Version 2.0, January 2004 https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined
by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

"Source" form shall mean the preferred form for making modifications, including but not limited
to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on
(or derived from) the Work and for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of authorship. For the purposes of this

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

https://www.apache.org/licenses/

379

License, Derivative Works shall not include works that remain separable from, or merely link (or
bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or
Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this
definition, "submitted" means any form of electronic, verbal, or written communication sent to the
Licensor or its representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by, or on behalf of,
the Licensor for the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not
a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s) was submitted.
If You institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the
files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within such

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

380 Appendix G Open Source Software License Acknowledgements

NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works;
or, within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions
of this License, without any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely
responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate and
grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages,
including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited
to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor has been advised of the possibility
of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

381

harmless for any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

PCRE

This software includes PCRE library. Copyright © 1997-2015 University of Cambridge. All rights
reserved.

C++ wrapper functions. Copyright © 2007-2015, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of
their contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

XFree86

This Software contains portions of XFree86 software and the delivery of XFree86 software or
portions of the said software is subject to the acknowlegement of the following copyright notice and
permission notice of The Open Group:

Copyright © 1988, 1998 The Open Group

Permission to use, copy, modify, distribute, and sell XFree86 software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice appear in all copies
and that both the copyright notice and this permission notice appear in supporting documentation.

THE XFREE86 SOFTWARE IS PROVIDE "AS IS" WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

382 Appendix G Open Source Software License Acknowledgements

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
XFREE86 SOFTWARE OR THE USE OR OTHER DEALINGS IN THE XFREE86 SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from The Open Group.

ZLIB

This software incorporates zlib data compression library by Jean-loup Gailly and Mark Adler.

liboqs

Licensed under MIT. Copyright (c) 2016-2024 Open Quantum Safe project.

liboqs includes some third party libraries or modules that are licensed differently, including:

• BSD 3-Clause License

• Apache License v2.0

• public domain

• BSD-like CRYPTOGAMS license

• CC0

• Custom license for rand_nist.c:

Created by Bassham, Lawrence E (Fed) on 8/29/17.

Copyright © 2017 Bassham, Lawrence E (Fed). All rights reserved.

NIST-developed software is provided by NIST as a public service. You may use, copy, and
distribute copies of the software in any medium, provided that you keep intact this entire notice.
You may improve, modify, and create derivative works of the software or any portion of the
software, and you may copy and distribute such modifications or works. Modified works should
carry a notice stating that you changed the software and should note the date and nature of any
such change. Please explicitly acknowledge the National Institute of Standards and Technology as
the source of the software.

NIST-developed software is expressly provided "AS IS." NIST MAKES NO WARRANTY
OF ANY KIND, EXPRESS, IMPLIED, IN FACT, OR ARISING BY OPERATION
OF LAW, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT,
AND DATA ACCURACY. NIST NEITHER REPRESENTS NOR WARRANTS THAT THE
OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE,

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

383

OR THAT ANY DEFECTS WILL BE CORRECTED. NIST DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF THE SOFTWARE OR
THE RESULTS THEREOF, INCLUDING BUT NOT LIMITED TO THE CORRECTNESS,
ACCURACY, RELIABILITY, OR USEFULNESS OF THE SOFTWARE.

You are solely responsible for determining the appropriateness of using and distributing the
software and you assume all risks associated with its use, including but not limited to the risks and
costs of program errors, compliance with applicable laws, damage to or loss of data, programs or
equipment, and the unavailability or interruption of operation. This software is not intended to be
used in any situation where a failure could cause risk of injury or damage to property. The software
developed by NIST employees is not subject to copyright protection within the United States.

SPDX-License-Identifier: Unknown

Modified for liboqs by Douglas Stebila

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

384 Appendix G Open Source Software License Acknowledgements

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

385

Index

Symbols
$HOME, 9
%APPDATA%, 9
%USERPROFILE%, 9
<INSTALLDIR>, 9

A
access permissions, 119
accounts, local, 57
active mode FTP, 102
agent forwarding, 95, 129, 150, 191
AIX

installation, 18
uninstallation, 24

APPDATA, 9
Application Data, 29, 155
application tunneling, 95
audit messages, 337
authentication, 45, 57

certificate, 36, 52, 53, 66, 153, 160
GSSAPI, 73, 113, 122, 137
host-based, 72
Kerberos, 73
keyboard-interactive, 72, 122, 137
PAM, 72
password, 54, 72, 122, 137
public-key, 36

server, 46, 157
user, 57, 122, 137, 153

RADIUS, 72
SecurID, 72

authentication methods, 45, 122, 136, 137, 184
authority info access, 53
authorization file, 230
authorized_keys directory, 229
authorized_keys file, 230
automatic tunnels, 165
auxiliary data directory

on Unix, 26, 169
on Windows, 28

B
backup files, 212
basic configuration, 36, 115

C
CA certificate, 53, 160, 174
case-sensitivity, 263, 296
certificate authentication

server, 52, 53, 160, 171
user, 66, 68, 153

certificate revocation list (CRL), 53
disabling, 54, 174
distribution point, 53
prefetching, 164, 173

certificates, 153
enrolling, 67, 72
revoked, 53
validating, 171

certificate viewer, 326
certification, FIPS 140-2, 118, 171
certification authority (CA), 52, 171
CertKey, 67
channel, 95
characters, valid, 263, 296
checkpoint-restart, 76, 278, 278
checksum, 197
ciphers, 183
client

installation, 19
clients

CMP enrollment, 315
scpg3, 253
sftpg3, 267
sshg3, 240

CMP enrollment client, 315
command-line tools, 38, 223
components, 31
compression, 189
configuration file, 26, 167

backup, 212
configuration tools, 115
configuring, 115
Connection Broker, 36, 36, 115, 115, 167

configuration file, 26, 167

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

386 Index

debugging, 111
connection profiles, 38, 134, 199
Connections Configuration GUI, 115
connection settings, 115
controlling file transfer, 79
Control Panel, 25
create shortcut, 134
CRL (certificate revocation list), 53

disabling, 54, 174
distribution point, 53
prefetching, 164, 173

cryptographic library, 43, 118, 171
customer support, 9

D
Debian, 19

client installation, 19
uninstallation, 25

DEB packages, 19
debugging

Connection Broker, 111
user authentication with certificates, 71

default domain, 162, 172
default installation directory, 23
defining Connection Broker menu items, 119
deleting remote folders, 79
desktop, 24
Diffie-Hellman key exchange, 47, 52
digital signature, 57
digital signature in key usage, 174
directories

default installation, 23
disabling CRL, 54, 161, 174
disk space requirement, 14
documentation, 7
documentation conventions, 7
DoD PKI, 162, 174
domain user account, 66
downloading files, 77
downloading software, 17
dynamic tunnels, 103

E
editing configuration files, 36
egrep, 331

character sets, 333
escaped tokens, 332
patterns, 331

enabling FIPS 140-2 mode, 41
end-point identity check, 162, 171
Enforce digital signature in key usage, 162
enrolling certificates, 72
enrolling user certificate, 67
environment variables, 9

scpg3, 265
sftpg3, 298
ssh-broker-config.xml, 169
ssh-broker-g3, 226
sshg3, 250
ssh-keyfetch, 313
ssh-translation-table, 304

escape sequences, sshg3, 249
event log, 131, 210
exclusive-connection, 191
exit value, sftpg3 batch mode, 287
exit values

scpg3, 266
sftpg3, 299
sshg3, 252

expired CRL, 174
external key viewer, 330

F
fallback to plaintext FTP

command-line option, 209
in configuration file, 209

Federal Information Processing Standard (FIPS),
118, 171
file access permissions, 119, 179
file locations

on Unix, 26
on Windows, 27

filename characters, 263, 296
filename support, 263, 296
file security, 119
file size, 79
files related to Tectia Client, 26
file transfer, 75, 75, 76, 267

controlling, 79
downloading, 77

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

387

uploading, 78
filter engine, 168, 206
Finder, 78
fingerprint, 47, 306, 306, 308
FIPS 140-2, 43
FIPS 140-2 certification, 118, 171
FIPS 140-2 mode

enabling, 41
firewall, 53
folders

default installation directory, 23
forwarding

agent, 95, 129, 150, 191
local, 95
remote, 104
X11, 95, 106, 129, 150, 191

FTP active mode, 102
FTP passive mode, 102

G
generating keys, 62, 153
Generic Security Service API (GSSAPI), 73
getting started, 31
glob patterns, 293
GSSAPI authentication, 73, 113, 122, 137

troubleshooting, 113
GSSAPI ticket forwarding, 122, 188

H
hardware requirement, 14
hashed host key format, 47
Hexl, 327
HOME, 9
host, 32
host-based authentication, 72
host-based default domain, 189
host key, 51

checking, 193
directory, 228, 229
hashed format, 47
managing, 157
public, 47
resolving, 51

host key algorithms, 128, 147, 184, 200
hostkeys directory, 228, 229

hostname, 32
host settings, 31
HTTP proxy URL, 162, 172
HTTP repository, 53

I
IBM AIX, 18
icons, 24
identification file, 59, 67, 227
IdKey, 59
idle timeout, 190
incoming tunnels, 104, 152
installation

optional module, 376
removing, 24
silent, 23
upgrading, 15

installation directory, 23
INSTALLDIR, 9
installed files, 26
installing

client on Debian, 19
installing Tectia Client, 18

on AIX, 18
on Linux, 18
on Solaris, 20
on Windows, 21

IP address family, 198
IPv6 address, 95

K
keepalive-interval, 191
keepalive messages, 191
Kerberos authentication, 73
KEXs, 184
keyboard-interactive authentication, 72, 122, 137
key exchange, 47, 52
key file, 63, 140
key fingerprint, 47, 306, 306, 308
key pair, 57
key providers, 155
key rotation,
keys, 153, 157
key security, 57
key stores, 175, 181

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

388 Index

known_hosts file, 51, 180, 229

L
LDAP servers, 163, 173
library, cryptographic, 43, 118, 171
license file, 14
licensing, 14
Lightweight Directory Access Protocol (LDAP), 53
Linux

installation, 18
uninstallation, 24

local port forwarding, 95
local tunnels, 95, 150
local user account, 57
location, installed files, 26
logging, 131, 210

M
MACs, 183
maintenance release, 17
man-in-the-middle attack, 47, 52
man pages, 223
maximum file size, 79
menu options, 119, 222
Microsoft Crypto API, 156
Microsoft Windows, 21
modifying configuration files, 36
MSCAPI, 156
MSI package, 21

N
nested tunnel, 41, 136
non-interactive installation, 23
notation

path, 263, 296

O
OCSP responders, 162, 173
Online Certificate Status Protocol (OCSP), 53
online purchase, 14
OpenSSH authorized_keys file, 230
OpenSSH CA-key, 174
OpenSSH certificates, 46, 163, 171
OpenSSH keys, 46, 65, 181
OpenSSH known_hosts file, 180, 229, 229

OpenSSL, removing, 375
OpenSSL cryptographic library, 43
Oracle Solaris, 20
OSS licences, 377
outgoing tunnels, 95, 151

P
packaging, 14
PAM authentication, 72
passive mode FTP, 102
passphrase, 58
password

stored, 55
password authentication, 54, 72, 122, 137
path notation, 263, 296
PEM encoding, 327
permissions, 57
PKCS #11 keys, 182
PKCS #11 token, 67
PKCS #12, 181
PKCS #12 certificates, 72
PKCS #7, 181
PKCS #7 certificates, 72
PKCS #7 package, 53, 161
Pluggable Authentication Module (PAM), 72
pop-up menus, 77, 78
port, 32, 41
port forwarding, 95, 149

local, 95
remote, 104
restricting, 95

port number, 32
private key

user, 58, 67
profiles

adding to taskbar (Windows), 135
creating shortcut (Windows),
roaming, 57

profile settings, 38, 134
program icon, 24
proxy rules, 190
proxy settings, 130, 147
public key, 62

host, 47, 157
user, 58

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

389

public-key authentication, 36, 57
server, 46, 157
user, 57, 122, 137, 153

Public-Key Authentication Wizard, 62
public-key signature algorithms, 123, 139, 185

Q
quiet mode, 133

R
RADIUS authentication, 72
random_seed file, 227
Red Hat Linux, 18
registry keys, 29
regular expressions (regex)

in filenames, 263, 296
syntax, 331

rekey interval, 184
related documents, 7
remote environment, 192
remote folders, deleting, 79
remote port forwarding, 104
remote tunnels, 104, 152
removing OpenSSL, 375
removing Tectia Client, 24

from AIX, 24
from Debian, 25
from Linux, 24
from Solaris, 25
from Windows, 25
old versions, 15

return value, sftpg3 batch mode, 287
return values

scpg3, 266
sftpg3, 299
sshg3, 252

revoked certificate, 53
RFC 4253, 312
RFC 4716, 313
roaming profile, 57
RPM packages, 18
rule, 207

S
SAF authentication

server, 182
user, 182

SCEP client, 322
scpg3, 75, 253

environment variables, 265
exit values, 266
options, 253

secure application connectivity, 95
secure copy (SCP), 75, 253
secure file transfer, 75
Secure File Transfer Protocol (SFTP), 76, 267
Secure Shell version 2, 240
SecurID authentication, 72
security issues, 57
server authentication, 157

host key algorithms, 128, 147, 184, 200
with certificates, 52, 53, 160
with public key, 46, 157

server certificate, 52
settings

host, 31
on Windows, 115
profile, 38, 134

SFTP
checkpoint, 76, 278, 278
streaming, 76, 278

sftpg3, 76, 267
commands, 273
environment variables, 298
exit values, 299
options, 268
startup batch file, 267, 298

shortcut menus, 77, 78
signature algorithms, 123, 139, 185
silent installation, 23
smart card, 67
SOCKS server, 103
SOCKS server URL, 163, 172
Solaris

installation, 20
uninstallation, 25

ssh_known_hosts file, 229
ssh_sftp_batch_file, 267, 298
SSH2, 240
SSH2 keys, 181

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

390 Index

ssh-broker-config.xml, 167
ssh-broker-ctl, 231

commands, 232
options, 231

ssh-broker-g3, 225
environment variables, 226
options, 226

ssh-certview-g3, 326
ssh-cmpclient-g3, 315

commands, 316
examples, 320
options, 317

ssh-ekview-g3, 330
sshg3, 240

commands, 249
environment variables, 251
escape sequences, 249
exit values, 252
options, 241

ssh-keyfetch, 311
environment variables, 313
examples, 313
options, 311

ssh-keygen-g3, 58, 305
examples, 310
options, 305

ssh-scepclient-g3, 322
commands, 323
examples, 325
options, 323

ssh-translation-table, 301
environment variables, 304
options, 301

ssh-troubleshoot, 110, 238
commands, 239
options, 238

streaming, 76, 278
strict host key checking, 193
support, 9
supported platforms, 13
SUSE Linux, 18
system configuration, 115
system log, 131, 210
system requirements, 13

T
taskbar icon, 222
TCP connection

keepalive, 191
timeout, 191

technical support, 9
Tectia Client, 10
Tectia Client components, 31
Tectia Connections Configuration GUI, 115
Tectia icon, 24
Tectia Server, 11
Tectia Server Configuration tool, 11
Tectia Server for IBM z/OS, 11
terminal

bell, 133
closing, 133
selection, 133

terminology, 9
test connection, 134
ticket forwarding, 122, 188
timeout, TCP connection, 191
translation table, 301
transparent TCP tunneling, 97
tray icon, 119
tray menu, 119, 222
troubleshooting, 109

publickey, 113
user authentication with certificates, 71

troubleshooting tool, 109
tunneling, 95, 149

agent, 129, 150
applications, 103
IPv6, 95
restricting, 95
X11, 95, 106, 129, 150, 191

tunnels, 95
automatic, 165
local (outgoing), 95, 151
remote (incoming), 104, 152

U
Ubuntu, 19
uninstalling Tectia Client, 24

from AIX, 24

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

391

from Debian, 25
from Linux, 24
from Solaris, 25
from Ubuntu, 25
from Windows, 25

upgrading, 15
uploading a public key, 64, 155
uploading files, 77
uploading public keys, 59
user, 32
user account

domain, 66
local, 57

user authentication
host-based, 72
with certificates, 66, 153
with certificates (Windows), 68
with GSSAPI, 73
with keyboard-interactive, 72
with password, 54
with public key, 57, 153

user certificate, enrolling, 67
user-config-directory, 178
user configuration directory, 178
user identity, 200
user key, 59, 62
username, 32
user name, 32
USERPROFILE, 9
user-specific configuration files

on Unix, 27
on Windows, 28

using secure copy, 75
using secure file transfer, 76
UTF-8, 263

V
valid characters, 263, 296

W
wildcard, 263, 293, 296
Windows

desktop, 24
Event Log, 131
installation, 21

modify installation, 376
password, 54
registry keys, 29
taskbar, 222

adding profiles,
uninstallation, 25
user authentication with certificates, 68

Windows Explorer, 78

X
X.509 certificates, 53, 67, 72, 161, 181
X11 forwarding, 95, 106, 129, 149, 191
XML attribute

allow-relay, 202, 203, 206
allow-ticket-forwarding, 188
data, 201
default-domain, 172
disable-crls, 174
dll-path, 188
end-point-identity-check, 171
fallback-to-plain, 209
file, 200
gateway-profile, 199
hash, 200
http-proxy-url, 172
id, 201
identity-file, 201
socks-server-url, 172
use-expired-crls, 174

XML element
accept-unknown-host-keys, 177
address-family, 198
altname-email, 187, 187
altname-upn, 187
authentication-method, 185, 195
authentication-methods, 184, 200
authentication-success-message, 195
auth-gssapi, 188
auth-hostbased, 185
auth-keyboard-interactive, 188
auth-password, 185
auth-publickey, 185
auth-server-certificate, 193
auth-server-publickey, 193
ca-certificate, 174

Tectia® Client 7.0 User Manual
© 1995–2025 SSH Communications Security

Corporation

392 Index

cert-validation, 171
checksum, 197
cipher, 183
ciphers, 183, 200
close-window-on-disconnect, 197
compression, 189, 201
crl-prefetch, 173
crypto-lib, 171
default-settings, 182
dod-pki, 174
environment, 192
exclusive-connection, 191, 201
extended-key-usage, 187
file-access-control, 179
filter-engine, 206
forward, 191
forwards, 191, 202
general, 171
gui, 206
hostbased-default-domain, 189
hostkey, 200
hostkey-algorithm, 184
hostkey-algorithms, 184, 200
host-key-always-ask, 177
identification, 176
identity, 200
idle-timeout, 190, 201
issuer-name, 187
keepalive-interval, 191, 201
kex, 184
kexs, 183, 200
key-selection, 186
key-store, 174, 176, 181
key-stores, 175
known-hosts, 180
ldap-server, 173
local-hostname, 185
local-tunnel, 202
log-events, 210, 211
logging, 210
log-target, 210, 211
mac, 183
macs, 183, 200
ocsp-responder, 173
openssh-ca-key, 174

password, 203
profile, 199
profiles, 198
protocol-parameters, 179
proxy, 190, 201
public-key, 187
quiet-mode, 197
rekey, 184, 200
remote-environment, 192, 203
remote-tunnel, 203
rule, 207
server-authentication-methods, 203
server-banners, 191, 202
sftpg3-mode, 196
static-tunnels, 205
strict-host-key-checking, 177
subject-name, 187
tcp-connect-timeout, 191, 201
terminal-bell, 197
terminal-selection, 196
tunnel, 205
tunnels, 202
user-config-directory, 178
user-identities, 200
user-keys, 176
windows-capture, 209

© 1995–2025 SSH Communications Security
Corporation Tectia® Client 7.0 User Manual

	Tectia® Client 7.0
	Table of Contents
	Chapter 1 About This Document
	1.1 Documentation Conventions
	1.1.1 Operating System Names
	1.1.2 Directory Paths

	1.2 Customer Support
	1.3 Component Terminology

	Chapter 2 Installing Tectia Client
	2.1 Preparing for Installation
	2.1.1 System Requirements
	2.1.2 Hardware and Disk Space Requirements
	2.1.3 Licensing
	2.1.4 Installation Packages
	2.1.5 Upgrading Previously Installed Tectia Client Software
	2.1.6 Downloading Tectia Releases

	2.2 Installing the Tectia Client Software
	2.2.1 Installing on AIX
	2.2.2 Installing on Linux (RPM)
	2.2.3 Installing on Linux (DEB)
	2.2.4 Installing on Solaris
	2.2.5 Installing on Windows
	Silent Installation
	Desktop Icon

	2.3 Removing the Tectia Client Software
	2.3.1 Removing from AIX
	2.3.2 Removing from Linux (RPM)
	2.3.3 Removing from Linux (DEB)
	2.3.4 Removing from Solaris
	2.3.5 Removing from Windows

	2.4 Files Related to Tectia Client
	2.4.1 File Locations on Unix
	2.4.2 File Locations on Windows
	2.4.3 Registry Keys on Windows

	2.5 Symlinks between ssh/scp/sftp and sshg3/scpg3/sftpg3 (on Unix)

	Chapter 3 Getting Started with Tectia Client
	3.1 Product Components
	3.2 First Login to a Remote Host
	3.2.1 Logging in with PrivX Desktop GUI
	3.2.2 Logging in with Command-Line sshg3

	3.3 Using Public-Key Authentication
	3.4 Configuring Tectia Client
	3.4.1 Connection Broker Configuration
	3.4.2 Connection Broker Configuration Files
	3.4.3 Command-Line Tools

	3.5 Creating Connection Profiles
	3.5.1 Defining Connection Profile Settings

	3.6 Enabling FIPS 140-2 Mode
	3.6.1 Enabling FIPS Mode Using Configuration GUI
	3.6.2 Enabling FIPS Mode Using Configuration File
	3.6.3 FIPS-Certified Cryptographic Library

	Chapter 4 Authentication
	4.1 Supported User Authentication Methods
	4.1.1 Compatibility with OpenSSH Keys and Certificates

	4.2 Server Authentication with Public Keys
	4.2.1 Host Key Storage Formats
	4.2.2 Using the System-Wide Host Key Storage
	Storing Keys in the Hashed Format
	Storing Keys in the Plain Format

	4.2.3 Resolving Hashed Host Keys
	4.2.4 Using the OpenSSH known_hosts File

	4.3 Server Authentication with Certificates
	4.3.1 Managing CA Certificates with the Configuration File (Unix)
	4.3.2 Managing CA Certificates with the GUI

	4.4 User Authentication with Passwords
	4.4.1 Defining Password Authentication with the Configuration File (Unix)
	4.4.2 Using Stored Passwords in Connection Profiles
	4.4.3 Managing Authentication Methods with the GUI

	4.5 User Authentication with Public Keys
	4.5.1 Creating Keys with ssh-keygen-g3
	4.5.2 Uploading Public Keys Manually
	4.5.3 Creating Keys with the Public-Key Authentication Wizard
	Public-Key Generation
	Uploading Public Keys Automatically

	4.5.4 Using Keys Generated with OpenSSH
	4.5.5 Special Considerations with Windows Servers

	4.6 User Authentication with Certificates
	4.6.1 Using the Configuration File (Unix)
	4.6.2 Configuring User Authentication with Certificates on Windows
	Troubleshooting User Authentication with Certificates

	4.6.3 Importing PKCS Certificates with Tectia Connections Configuration GUI

	4.7 Host-Based User Authentication (Unix)
	4.8 User Authentication with Keyboard-Interactive
	4.8.1 Defining Keyboard-Interactive Method with the Configuration File (Unix)
	4.8.2 Defining Keyboard-Interactive Method with the GUI

	4.9 User Authentication with GSSAPI
	4.9.1 Defining GSSAPI Method with the Configuration File (Unix)
	4.9.2 Defining GSSAPI Method with the GUI

	Chapter 5 Transferring Files
	5.1 Secure File Transfer with scpg3 and sftpg3 Commands
	5.1.1 Using scpg3
	5.1.2 Using sftpg3
	5.1.3 Enhanced File Transfer Functions

	5.2 Secure File Transfer GUI
	5.2.1 Downloading Files with PrivX Desktop File Transfer GUI
	5.2.2 Uploading Files with PrivX Desktop File Transfer GUI
	5.2.3 File Properties and Preview
	5.2.4 Differences from OS tools

	5.3 Controlling File Transfer
	5.3.1 Site Command

	Chapter 6 Secure Shell Tunneling
	6.1 Local Tunnels
	6.1.1 Transparent TCP Tunneling on Windows
	Configuring Transparent Tunneling
	Transparent Tunneling Logs

	6.1.2 Non-Transparent TCP Tunneling
	Automatic Tunnels
	Examples of Local Tunneling

	6.1.3 Non-Transparent FTP Tunneling
	Tunneling FTP in Passive Mode
	Tunneling FTP in Active Mode

	6.1.4 SOCKS Tunneling

	6.2 Remote Tunnels
	6.3 X11 Forwarding
	6.4 Agent Forwarding

	Chapter 7 Troubleshooting Tectia Client
	7.1 Gathering Basic Troubleshooting Information
	7.2 Collecting System Information for Troubleshooting
	7.3 Setting Connection Broker to Debug Mode
	7.4 Answers to Common Problems

	Appendix A Connection Broker Configuration Tools
	A.1 Tectia Connections Configuration GUI
	A.1.1 Opening the GUI
	When PrivX Desktop GUI is running
	On command-line

	A.1.2 Defining General Settings
	Defining Default Connection Settings
	Defining Connection Settings
	Defining Authentication
	Defining Ciphers
	Defining MACs
	Defining KEXs
	Defining Server Connections
	Defining Default Tunneling Settings

	Defining Proxy Rules
	Defining Logging Settings
	Defining Clients Settings

	A.1.3 Defining Connection Profiles
	Defining Connection Settings
	Defining Authentication
	Using the Public-Key Authentication Wizard
	Defining Ciphers
	Defining MACs
	Defining KEXs
	Defining Server Connections
	Defining Proxy Settings
	Defining Tunneling
	Forwarding Options
	Local Tunnels
	Remote Tunnels

	A.1.4 Defining User Authentication
	Managing Keys and Certificates
	Managing Key Providers

	A.1.5 Defining Server Authentication
	Managing Host Keys
	Managing CA Certificates
	Managing OpenSSH CA Keys
	Managing LDAP Server Settings
	Managing CRL Prefetch Settings

	A.1.6 Defining Automatic Tunnels

	A.2 Configuration File for the Connection Broker
	ssh-broker-config

	A.3 Backup of Configuration Files
	A.4 Connection Broker Configuration File Quick Reference
	A.5 PrivX Desktop Shortcut Menu (Windows and Linux)

	Appendix B Command-Line Tools and Man Pages
	ssh-broker-g3
	ssh-broker-ctl
	ssh-troubleshoot
	sshg3
	scpg3
	sftpg3
	ssh-translation-table
	ssh-keygen-g3
	ssh-keyfetch
	ssh-cmpclient-g3
	ssh-scepclient-g3
	ssh-certview-g3
	ssh-ekview-g3

	Appendix C Egrep Syntax
	C.1 Egrep Patterns
	C.2 Escaped Tokens for Regex Syntax Egrep
	C.3 Character Sets For Egrep

	Appendix D Audit Messages
	Appendix E Default and Supported SSH Algorithms
	E.1 Ciphers
	E.2 Key-Exchange Algorithms
	E.3 Message-Authentication Codes
	E.4 Host-Key and Public Key Signature Algorithms

	Appendix F Removing OpenSSL from Tectia Client
	F.1 Background Information
	F.1.1 Should I Remove the OpenSSL Library?
	F.1.2 What Happens If I Remove the OpenSSL Library?

	F.2 Removing the OpenSSL Cryptographic Library
	F.2.1 Linux and Solaris
	F.2.2 Windows
	Changing Optional Installation Modules for Tectia on Windows

	Appendix G Open Source Software License Acknowledgements
	Index

